メソッド "example" の example が正常に送信されました。 内部トランザクション トランザクション トークン転送 nft転送 トークン詳細転送 IDごとのトークン詳細転送 トークン所有者 ログ 実行が取り消されました。
false
false
トークン
Chonk Society (CHONK)

概要

最大総供給
0 CHONK

より詳しい情報

トークンタイプ
ERC-721
警告!契約バイトコードは変更されており、検証されたものと一致しません。したがって、このスマートコントラクトとの相互作用は危険toなる場合があります。
この契約は、Sourcifytoよって部分的to検証されています。
契約名:
ChonkSociety




最適化を有効toする:
true
コンパイラバージョン:
v0.8.28+commit.7893614a




最適化は実行されます:
200
EVMバージョン:
paris




検証:
2025-03-10T06:44:40.907151Z

コンストラクターの引数

0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000087465737420757269000000000000000000000000000000000000000000000000

Arg [0] (string) : test uri

              

ファイル 1 の 59: contracts/ChonkSociety.sol

Sol2uml
新規
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

contract ChonkSociety is ERC721URIStorage {
    using Strings for uint256;
    using EnumerableSet for EnumerableSet.UintSet;

    /* ******* */
    /* STORAGE */
    /* ******* */

    /**
     * @notice base extension for metadata URI
     */
    string public constant baseExtension = ".json";

    /**
     * @notice Token Id
     */
    uint256 public tokenIds;

    /**
     * @notice base URI for metadata
     */
    string public baseURI = "";

    /* *********** */
    /* CONSTRUCTOR */
    /* *********** */

    /**
     * @notice null Constructor
     * @param _baseURI Base URI of NFT
     */
    constructor(string memory _baseURI) ERC721("Chonk Society", "CHONK") {
        baseURI = _baseURI;
    }

    /* ****************** */
    /* EXTERNAL FUNCTIONS */
    /* ****************** */

    /**
     * @notice Mint new NFT
     * @dev Everyone can call
     * @param _to Address will be received NFT
     * @param _amount Amount NFT that address will be received
     */
    function mint(address _to, uint256 _amount) external {
        for (uint256 i = 0; i < _amount; i++) {
            tokenIds++;
            _safeMint(_to, tokenIds);
        }
    }

    /* ************* */
    /* VIEW FUNCTIONS */
    /* ************* */

    /**
     * @notice Get token URI of a NFT
     * @dev Everyone can call
     * @param tokenId Id of NFT
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        _requireOwned(tokenId);
        return string(abi.encodePacked(baseURI, tokenId.toString(), baseExtension));
    }
}
        

File 2 of 59: @openzeppelin/contracts/utils/Strings.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}
          

File 3 of 59: contracts/loans/BaseLoan.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";

/**
 * @title  BaseLoan
 * @dev Implements base functionalities common to all Loan types.
 * Mostly related to governance and security.
 */
abstract contract BaseLoan is Ownable, Pausable, ReentrancyGuard {
    /* *********** */
    /* CONSTRUCTOR */
    /* *********** */

    /**
     * @notice Sets the admin of the contract.
     *
     * @param _admin - Initial admin of this contract.
     */
    constructor(address _admin) Ownable(_admin) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /* ****************** */
    /* EXTERNAL FUNCTIONS */
    /* ****************** */

    /**
     * @notice Triggers stopped state.
     *
     * @dev Only the owner can call this method.
     *      The contract must not be paused.
     */
    function pause() external onlyOwner {
        _pause();
    }

    /**
     * @notice Returns to normal state.
     *
     * @dev Only the owner can call this method.
     *      The contract must be paused.
     */
    function unpause() external onlyOwner {
        _unpause();
    }
}
          

File 4 of 59: @openzeppelin/contracts/utils/Context.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}
          

File 5 of 59: @openzeppelin/contracts/utils/cryptography/SignatureChecker.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.20;

import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC-1271 signatures from smart contract wallets like
 * Argent and Safe Wallet (previously Gnosis Safe).
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC-1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
        if (signer.code.length == 0) {
            (address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(hash, signature);
            return err == ECDSA.RecoverError.NoError && recovered == signer;
        } else {
            return isValidERC1271SignatureNow(signer, hash, signature);
        }
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC-1271.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}
          

File 6 of 59: @openzeppelin/contracts/interfaces/IERC20.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
          

File 7 of 59: @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}
          

File 8 of 59: contracts/TokenBoundAccount/TokenBoundAccountRegistry.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Create2} from "@openzeppelin/contracts/utils/Create2.sol";
import {ITokenBoundAccountRegistry} from "./interfaces/ITokenBoundAccountRegistry.sol";
import {TokenBoundAccountBytecodeLib} from "./libraries/TokenBoundAccountBytecodeLib.sol";

contract TokenBoundAccountRegistry is ITokenBoundAccountRegistry {
    error InitializationFailed();

    function createAccount(
        address implementation,
        uint256 chainId,
        address tokenContract,
        uint256 tokenId,
        uint256 salt
    ) external returns (address) {
        bytes memory code = TokenBoundAccountBytecodeLib.getCreationCode(
            implementation,
            chainId,
            tokenContract,
            tokenId,
            salt
        );

        address _account = Create2.computeAddress(bytes32(salt), keccak256(code));

        if (_account.code.length != 0) return _account;

        emit AccountCreated(_account, implementation, chainId, tokenContract, tokenId, salt);

        _account = Create2.deploy(0, bytes32(salt), code);

        return _account;
    }

    function account(
        address implementation,
        uint256 chainId,
        address tokenContract,
        uint256 tokenId,
        uint256 salt
    ) external view returns (address) {
        bytes32 bytecodeHash = keccak256(
            TokenBoundAccountBytecodeLib.getCreationCode(implementation, chainId, tokenContract, tokenId, salt)
        );

        return Create2.computeAddress(bytes32(salt), bytecodeHash);
    }
}
          

File 9 of 59: contracts/LendingPool/interfaces/ILendingStake.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/**
 *  @title  Lending Stake Interface
 *
 */
interface ILendingStake {
    function approve(uint256 _amount) external;
    function wXENE() external view returns (address);
}
          

File 10 of 59: contracts/LendingPool/LendingStake.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Pausable, Context} from "@openzeppelin/contracts/utils/Pausable.sol";
import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ILendingPool} from "./interfaces/ILendingPool.sol";

contract LendingStake is Context, Pausable, ReentrancyGuard {
    using Math for uint256;
    using SafeERC20 for IERC20;
    using EnumerableSet for EnumerableSet.AddressSet;

    // A big number to perform mul and div operations
    uint256 private constant REWARDS_PRECISION = 1e12;

    // Infomation of each user.
    struct UserInfo {
        uint256 amount; // How many wXENE tokens the user has provided.
        uint256 rewardDebt; // Reward debt. See explanation below.
        uint256 rewardPending;
        //
        // We do some fancy math here. Basically, any point in time, the amount of wXENE
        // entitled to a user but is pending to be distributed is:
        //
        //   pending reward = (user.amount * pool.accRewardPerShare) - user.rewardDebt + user.rewardPending
        //
        // Whenever a user deposits or withdraws wXENE tokens to a pool. Here's what happens:
        //   1. The pool's `accRewardPerShare` (and `lastRewardBlock`) gets updated.
        //   2. User receives the pending reward sent to his/her address.
        //   3. User's `amount` gets updated.
        //   4. User's `rewardDebt` gets updated.
    }

    // Staking Pool information
    struct PoolInfo {
        uint256 lastRewardBlock; // Last block number that Rewards distribution occurs.
        uint256 accRewardPerShare; // Accumulated reward per share, times 1e12. See below.
        uint256 stakedSupply;
        uint256 totalPendingReward;
    }
    PoolInfo public poolInfo;

    // The stake token
    IERC20 public immutable wXENE;

    // The lending pool contract address
    address public lendingPool;

    // The block number when mining starts
    uint256 public startBlock;

    // Rewards created per block.
    uint256 public rewardPerBlock;

    // Infomation of each staker
    mapping(address => UserInfo) public userInfo;

    // Addresses list of all stakers
    EnumerableSet.AddressSet private addressList;

    event Deposit(address indexed user, uint256 amount);
    event Withdraw(address indexed user, uint256 amount);
    event ClaimReward(address indexed user, uint256 amount);

    error OwnableUnauthorizedAccount(address account);
    error OnlyLendingPool(address account);
    error RewardBalanceTooSmall();
    error AmountTooSmall();
    error AmountTooBig();
    error InvalidAddress();
    error UserAlreadyStaked();

    modifier onlyOwner() {
        if (ILendingPool(lendingPool).owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
        _;
    }

    constructor(IERC20 _wXENE, address _lendingPool, uint256 _rewardPerBlock, uint256 _startBlock) {
        wXENE = _wXENE;
        lendingPool = _lendingPool;
        rewardPerBlock = _rewardPerBlock;
        startBlock = _startBlock;

        // Initial staking pool information
        poolInfo = PoolInfo({lastRewardBlock: _startBlock, accRewardPerShare: 0, stakedSupply: 0, totalPendingReward: 0});
    }

    /**
     * @dev Get number of staker
     */
    function addressLength() external view returns (uint256) {
        return addressList.length();
    }

    /**
     * @dev Get a staked address by index
     */
    function getAddressByIndex(uint256 _index) external view returns (address) {
        return addressList.at(_index);
    }

    /**
     * @dev Get all staked addresses
     */
    function getAllAddress() external view returns (address[] memory) {
        return addressList.values();
    }

    /**
     * @dev Get current pending rewards of given user
     */
    function pendingReward(address _user) external view returns (uint256) {
        uint256 accRewardPerShare = poolInfo.accRewardPerShare;
        uint256 stakedSupply = poolInfo.stakedSupply;
        if (block.number > poolInfo.lastRewardBlock && stakedSupply != 0) {
            uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number);
            uint256 tokenReward = multiplier * rewardPerBlock;

            accRewardPerShare = accRewardPerShare + tokenReward.mulDiv(REWARDS_PRECISION, stakedSupply);
        }

        UserInfo memory user = userInfo[_user];
        return user.amount.mulDiv(accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending;
    }

    /**
     * @dev Get current reward supply
     */
    function rewardSupply() external view returns (uint256) {
        if (block.number > poolInfo.lastRewardBlock && poolInfo.stakedSupply != 0) {
            uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number);
            return poolInfo.totalPendingReward + (multiplier * rewardPerBlock);
        }

        return poolInfo.totalPendingReward;
    }

    /**
     * @dev called by anyone to update reward variables of the given pool to be up-to-date
     */
    function updatePool() public {
        if (block.number <= poolInfo.lastRewardBlock) {
            return;
        }
        uint256 wXENESupply = poolInfo.stakedSupply;
        if (wXENESupply == 0) {
            poolInfo.lastRewardBlock = block.number;
            return;
        }
        uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number);
        uint256 tokenReward = multiplier * rewardPerBlock;

        poolInfo.totalPendingReward = poolInfo.totalPendingReward + tokenReward;
        poolInfo.accRewardPerShare = poolInfo.accRewardPerShare + tokenReward.mulDiv(REWARDS_PRECISION, wXENESupply);
        poolInfo.lastRewardBlock = block.number;
    }

    /**
     * @dev called by users to deposit wXENE tokens
     */
    function deposit(uint256 _amount) external whenNotPaused {
        if (_amount == 0) revert AmountTooSmall();

        updatePool();
        wXENE.safeTransferFrom(_msgSender(), address(this), _amount);

        UserInfo storage user = userInfo[_msgSender()];
        if (user.amount == 0 && user.rewardPending == 0 && user.rewardDebt == 0) {
            addressList.add(_msgSender());
        }

        user.rewardPending = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending;
        user.amount = user.amount + _amount;
        user.rewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION);

        poolInfo.stakedSupply = poolInfo.stakedSupply + _amount;

        emit Deposit(_msgSender(), _amount);
    }

    /**
     * @dev called by staked users to withdraw staked wXENE tokens
     */
    function withdraw(uint256 _amount) external nonReentrant whenNotPaused {
        if (_amount == 0) revert AmountTooSmall();

        UserInfo storage user = userInfo[_msgSender()];
        if (user.amount < _amount) revert AmountTooBig();

        updatePool();

        user.rewardPending = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending;
        user.amount = user.amount - _amount;
        user.rewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION);

        poolInfo.stakedSupply = poolInfo.stakedSupply - _amount;

        if (user.amount == 0) {
            addressList.remove(_msgSender());
        }

        wXENE.safeTransfer(_msgSender(), _amount);

        emit Withdraw(_msgSender(), _amount);
    }

    /**
     * @dev called by staked users to claim rewards from lending pool
     */
    function claimReward() external nonReentrant whenNotPaused {
        UserInfo storage user = userInfo[_msgSender()];

        updatePool();

        uint256 _currentRewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION);
        uint256 _amount = _currentRewardDebt - user.rewardDebt + user.rewardPending;
        if (_amount > wXENE.balanceOf(lendingPool)) {
            revert RewardBalanceTooSmall();
        }

        user.rewardPending = 0;
        user.rewardDebt = _currentRewardDebt;
        poolInfo.totalPendingReward -= _amount;

        ILendingPool(lendingPool).approveToPayRewards(address(wXENE), _amount);
        wXENE.safeTransferFrom(lendingPool, _msgSender(), _amount);

        emit ClaimReward(_msgSender(), _amount);
    }

    /**
     * @dev Get the multiplier between two blocks
     */
    function getMultiplier(uint256 _from, uint256 _to) private pure returns (uint256) {
        unchecked {
            return _to - _from;
        }
    }

    /**
     * @dev called by lending pool to approve tokens for disbursement
     */
    function approve(uint256 _amount) external {
        if (_msgSender() != lendingPool) revert OnlyLendingPool(_msgSender());
        wXENE.approve(lendingPool, _amount);
    }

    /**
     * @dev called by the owner to rescue tokens
     */
    function rescueToken(address _token, address _to) external onlyOwner {
        if (_to == address(0)) revert InvalidAddress();
        uint256 _withdrawable = IERC20(_token).balanceOf(address(this));

        // Protect the staked wXENE from being withdrawn
        if (_token == address(wXENE)) {
            _withdrawable = _withdrawable > poolInfo.stakedSupply ? _withdrawable - poolInfo.stakedSupply : 0;
        }

        IERC20(_token).safeTransfer(_to, _withdrawable);
    }

    /**
     * @dev called by the owner to pause, triggers stopped state
     */
    function pause() external onlyOwner whenNotPaused {
        _pause();
    }

    /**
     * @dev called by the owner to unpause, returns to normal state
     */
    function unpause() external onlyOwner whenPaused {
        _unpause();
    }

    /**
     * @dev called by the owner to set lending pool address
     */
    function setLendingPool(address _lendingPool) external onlyOwner {
        if (_lendingPool == address(0)) revert InvalidAddress();
        lendingPool = _lendingPool;
    }

    /**
     * @dev called by the owner to set reward per block
     */
    function setRewardPerBlock(uint256 _rewardPerBlock) external onlyOwner {
        rewardPerBlock = _rewardPerBlock;
    }

    /**
     * @dev called by the owner to set start block
     */
    function setStartBlock(uint256 _startBlock) external onlyOwner {
        if (poolInfo.stakedSupply != 0) revert UserAlreadyStaked();
        startBlock = _startBlock;
        poolInfo.lastRewardBlock = _startBlock;
    }
}
          

File 11 of 59: contracts/TokenBoundAccount/libraries/TokenBoundAccountBytecodeLib.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

library TokenBoundAccountBytecodeLib {
    function getCreationCode(
        address implementation_,
        uint256 chainId_,
        address tokenContract_,
        uint256 tokenId_,
        uint256 salt_
    ) internal pure returns (bytes memory) {
        return
            abi.encodePacked(
                hex"3d60ad80600a3d3981f3363d3d373d3d3d363d73",
                implementation_,
                hex"5af43d82803e903d91602b57fd5bf3",
                abi.encode(salt_, chainId_, tokenContract_, tokenId_)
            );
    }
}
          

File 12 of 59: @openzeppelin/contracts/utils/cryptography/ECDSA.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}
          

File 13 of 59: @openzeppelin/contracts/token/ERC721/utils/ERC721Utils.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol)

pragma solidity ^0.8.20;

import {IERC721Receiver} from "../IERC721Receiver.sol";
import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provide common ERC-721 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-721[ERC-721].
 *
 * _Available since v5.1._
 */
library ERC721Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC721Received(
        address operator,
        address from,
        address to,
        uint256 tokenId,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) {
                if (retval != IERC721Receiver.onERC721Received.selector) {
                    // Token rejected
                    revert IERC721Errors.ERC721InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC721Receiver implementer
                    revert IERC721Errors.ERC721InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}
          

File 14 of 59: @openzeppelin/contracts/interfaces/IERC1363.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}
          

File 15 of 59: @openzeppelin/contracts/token/ERC721/IERC721.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}
          

File 16 of 59: contracts/TokenBoundAccount/libraries/TokenBoundAccountLib.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Create2} from "@openzeppelin/contracts/utils/Create2.sol";
import {TokenBoundAccountBytecodeLib} from "./TokenBoundAccountBytecodeLib.sol";

library TokenBoundAccountLib {
    function computeAddress(
        address registry,
        address implementation,
        uint256 chainId,
        address tokenContract,
        uint256 tokenId,
        uint256 _salt
    ) internal pure returns (address) {
        bytes32 bytecodeHash = keccak256(
            TokenBoundAccountBytecodeLib.getCreationCode(implementation, chainId, tokenContract, tokenId, _salt)
        );

        return Create2.computeAddress(bytes32(_salt), bytecodeHash, registry);
    }

    function token() internal view returns (uint256, address, uint256) {
        bytes memory footer = new bytes(0x60);

        assembly {
            // copy 0x60 bytes from end of footer
            extcodecopy(address(), add(footer, 0x20), 0x4d, 0x60)
        }

        return abi.decode(footer, (uint256, address, uint256));
    }

    function salt() internal view returns (uint256) {
        bytes memory footer = new bytes(0x20);

        assembly {
            // copy 0x20 bytes from beginning of footer
            extcodecopy(address(), add(footer, 0x20), 0x2d, 0x20)
        }

        return abi.decode(footer, (uint256));
    }
}
          

File 17 of 59: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC-721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC-721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}
          

File 18 of 59: contracts/loans/utils/NFTfiSigningUtils.sol

// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

import {LoanData} from "../direct/LoanData.sol";
import {ILendingPool} from "../../LendingPool/interfaces/ILendingPool.sol";
import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";

/**
 * @title  NFTfiSigningUtils
 * @notice Helper contract for Loan. This contract manages verifying signatures from off-chain Loan orders.
 * Based on the version of this same contract used on Loan V1
 */
library NFTfiSigningUtils {
    /* ********* */
    /* FUNCTIONS */
    /* ********* */

    /**
     * @dev This function gets the current chain ID.
     */
    function getChainID() public view returns (uint256) {
        uint256 id;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            id := chainid()
        }
        return id;
    }

    /**
     * @notice This function is when the borrower accepts a lender's offer, to validate the lender's signature that the
     * lender provided off-chain to verify that it did indeed made such offer.
     *
     * @param _offer - The offer struct containing:
     * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest
     * for this loan.
     * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of
     * the loan, measured in erc20Denomination's smallest units.
     * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their
     * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have
     * to pay this amount to retrieve their collateral, regardless of whether they repay early.
     * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral.
     * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this
     * loan. The NFT is stored within this contract during the duration of the loan.
     * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal
     * this there is no referrer.
     * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the
     * loan and seize the underlying collateral NFT.
     * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be
     * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an
     * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest
     * earned.
     * @param _signature - The signature structure containing:
     * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`.
     * - nonce: The nonce referred here is not the same as an Ethereum account's nonce.
     * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing
     * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     *   - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     *   - Second, it allows a user to cancel an off-chain order by calling
     * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from
     * using the user's off-chain order that contains that nonce.
     * - expiry: Date when the signature expires
     * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following
     * combination of parameters:
     *   - offer.erc20Denomination
     *   - offer.principalAmount
     *   - offer.maximumRepaymentAmount
     *   - offer.nftCollateralContract
     *   - offer.nftCollateralId
     *   - offer.duration
     *   - offer.adminFeeInBasisPoints
     *   - signature.signer,
     *   - signature.nonce,
     *   - signature.expiry,
     *   - address of this contract
     *   - chainId
     */
    function isValidLenderSignature(
        LoanData.Offer memory _offer,
        LoanData.Signature memory _signature
    ) external view returns (bool) {
        return isValidLenderSignature(_offer, _signature, address(this));
    }

    /**
     * @dev This function overload the previous function to allow the caller to specify the address of the contract
     *
     * @param _offer - The offer struct containing:
     * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest
     * for this loan.
     * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of
     * the loan, measured in erc20Denomination's smallest units.
     * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their
     * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have
     * to pay this amount to retrieve their collateral, regardless of whether they repay early.
     * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral.
     * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this
     * loan. The NFT is stored within this contract during the duration of the loan.
     * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal
     * this there is no referrer.
     * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the
     * loan and seize the underlying collateral NFT.
     * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be
     * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an
     * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest
     * earned.
     * @param _signature - The signature structure containing:
     * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`.
     * - nonce: The nonce referred here is not the same as an Ethereum account's nonce.
     * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing
     * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     *   - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     *   - Second, it allows a user to cancel an off-chain order by calling
     * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from
     * using the user's off-chain order that contains that nonce.
     * - expiry: Date when the signature expires
     * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following
     * combination of parameters:
     *   - offer.erc20Denomination
     *   - offer.principalAmount
     *   - offer.maximumRepaymentAmount
     *   - offer.nftCollateralContract
     *   - offer.nftCollateralId
     *   - offer.duration
     *   - offer.adminFeeInBasisPoints
     *   - signature.signer,
     *   - signature.nonce,
     *   - signature.expiry,
     *   - address of this contract
     *   - chainId
     * @param _loanContract contract address of loan
     */
    function isValidLenderSignature(
        LoanData.Offer memory _offer,
        LoanData.Signature memory _signature,
        address _loanContract
    ) public view returns (bool) {
        require(block.timestamp <= _signature.expiry, "Lender Signature has expired");
        require(_loanContract != address(0), "Loan is zero address");
        if (_signature.signer == address(0)) {
            return false;
        } else {
            if (_offer.lendingPool != address(0)) {
                require(ILendingPool(_offer.lendingPool).isAdmin(_signature.signer), "Signature signer is not admin");
            }

            bytes32 message = keccak256(
                abi.encodePacked(getEncodedOffer(_offer), getEncodedSignature(_signature), _loanContract, getChainID())
            );

            return
                SignatureChecker.isValidSignatureNow(
                    _signature.signer,
                    MessageHashUtils.toEthSignedMessageHash(message),
                    _signature.signature
                );
        }
    }

    /**
     * @notice This function is called in renegotiateLoan() to validate the lender's signature that the lender provided
     * off-chain to verify that they did indeed want to agree to this loan renegotiation according to these terms.
     *
     * @param _loanId - The unique identifier for the loan to be renegotiated
     * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can
     * liquidate the loan and seize the underlying collateral NFT.
     * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to
     * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The
     * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay
     * early.
     * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation
     * @param _loan The current loan data
     * @param _signature - The signature structure containing:
     * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`.
     * - nonce: The nonce referred here is not the same as an Ethereum account's nonce.
     * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing
     * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun()
     * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains
     * that nonce.
     * - expiry - The date when the renegotiation offer expires
     * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the
     * following combination of parameters:
     * - _loanId
     * - _newLoanDuration
     * - _newMaximumRepaymentAmount
     * - _lender
     * - _lenderNonce
     * - _expiry
     * - address of this contract
     * - chainId
     */
    function isValidLenderRenegotiationSignature(
        bytes32 _loanId,
        uint32 _newLoanDuration,
        uint256 _newMaximumRepaymentAmount,
        uint256 _renegotiationFee,
        LoanData.LoanTerms memory _loan,
        LoanData.Signature memory _signature
    ) external view returns (bool) {
        return
            isValidLenderRenegotiationSignature(
                _loanId,
                _newLoanDuration,
                _newMaximumRepaymentAmount,
                _renegotiationFee,
                _loan,
                _signature,
                address(this)
            );
    }

    /**
     * @dev This function overload the previous function to allow the caller to specify the address of the contract
     *
     * @param _loanId - The unique identifier for the loan to be renegotiated
     * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can
     * liquidate the loan and seize the underlying collateral NFT.
     * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to
     * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The
     * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay
     * early.
     * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation
     * @param _loan The current loan data
     * @param _signature - The signature structure containing:
     * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`.
     * - nonce: The nonce referred here is not the same as an Ethereum account's nonce.
     * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing
     * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun()
     * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains
     * that nonce.
     * - expiry - The date when the renegotiation offer expires
     * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the
     * following combination of parameters:
     * - _loanId
     * - _newLoanDuration
     * - _newMaximumRepaymentAmount
     * - _lender
     * - _lenderNonce
     * - _expiry
     * - address of this contract
     * - chainId
     *
     * @param _loanContract contract address of loan
     */
    function isValidLenderRenegotiationSignature(
        bytes32 _loanId,
        uint32 _newLoanDuration,
        uint256 _newMaximumRepaymentAmount,
        uint256 _renegotiationFee,
        LoanData.LoanTerms memory _loan,
        LoanData.Signature memory _signature,
        address _loanContract
    ) public view returns (bool) {
        require(block.timestamp <= _signature.expiry, "Renegotiation Signature has expired");
        require(_loanContract != address(0), "Loan is zero address");

        if (_loan.useLendingPool) {
            if (!ILendingPool(_loan.lender).isAdmin(_signature.signer)) return false;
        } else {
            if (_signature.signer != _loan.lender) return false;
        }

        bytes32 message = keccak256(
            abi.encodePacked(
                _loanId,
                _newLoanDuration,
                _newMaximumRepaymentAmount,
                _renegotiationFee,
                getEncodedSignature(_signature),
                _loanContract,
                getChainID()
            )
        );

        return
            SignatureChecker.isValidSignatureNow(
                _signature.signer,
                MessageHashUtils.toEthSignedMessageHash(message),
                _signature.signature
            );
    }

    /**
     * @dev We need this to avoid stack too deep errors.
     * @param _offer - The offer struct containing:
     * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest
     * for this loan.
     * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of
     * the loan, measured in erc20Denomination's smallest units.
     * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their
     * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have
     * to pay this amount to retrieve their collateral, regardless of whether they repay early.
     * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral.
     * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this
     * loan. The NFT is stored within this contract during the duration of the loan.
     * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal
     * this there is no referrer.
     * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the
     * loan and seize the underlying collateral NFT.
     * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be
     * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an
     * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest
     * earned.
     */
    function getEncodedOffer(LoanData.Offer memory _offer) internal pure returns (bytes memory) {
        return
            abi.encodePacked(
                _offer.erc20Denomination,
                _offer.principalAmount,
                _offer.maximumRepaymentAmount,
                _offer.nftCollateralContract,
                _offer.nftCollateralId,
                _offer.duration,
                _offer.adminFeeInBasisPoints,
                _offer.lendingPool
            );
    }

    /**
     * @dev We need this to avoid stack too deep errors.
     * @param _signature - The signature structure containing:
     * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`.
     * - nonce: The nonce referred here is not the same as an Ethereum account's nonce.
     * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing
     * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     *   - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     *   - Second, it allows a user to cancel an off-chain order by calling
     * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from
     * using the user's off-chain order that contains that nonce.
     * - expiry: Date when the signature expires
     * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following
     * combination of parameters:
     *   - offer.erc20Denomination
     *   - offer.principalAmount
     *   - offer.maximumRepaymentAmount
     *   - offer.nftCollateralContract
     *   - offer.nftCollateralId
     *   - offer.duration
     *   - offer.adminFeeInBasisPoints
     *   - signature.signer,
     *   - signature.nonce,
     *   - signature.expiry,
     *   - address of this contract
     *   - chainId
     */
    function getEncodedSignature(LoanData.Signature memory _signature) internal pure returns (bytes memory) {
        return abi.encodePacked(_signature.signer, _signature.nonce, _signature.expiry);
    }
}
          

File 19 of 59: @openzeppelin/contracts/interfaces/draft-IERC6093.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
          

File 20 of 59: @openzeppelin/contracts/utils/introspection/IERC165.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
          

File 21 of 59: @openzeppelin/contracts/utils/Panic.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}
          

File 22 of 59: contracts/TokenBoundAccount/interfaces/ITokenBoundAccount.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface ITokenBoundAccountProxy {
    function implementation() external view returns (address);
}

/// @dev the ERC-165 identifier for this interface is `0xeff4d378`
interface ITokenBoundAccount {
    event TransactionExecuted(address indexed target, uint256 indexed value, bytes data);

    receive() external payable;

    function executeCall(address to, uint256 value, bytes calldata data) external payable returns (bytes memory);

    function token() external view returns (uint256 chainId, address tokenContract, uint256 tokenId);

    function owner() external view returns (address);

    function nonce() external view returns (uint256);
}
          

File 23 of 59: @openzeppelin/contracts/interfaces/IERC721.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../token/ERC721/IERC721.sol";
          

File 24 of 59: @openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/extensions/ERC721URIStorage.sol)

pragma solidity ^0.8.20;

import {ERC721} from "../ERC721.sol";
import {Strings} from "../../../utils/Strings.sol";
import {IERC4906} from "../../../interfaces/IERC4906.sol";
import {IERC165} from "../../../interfaces/IERC165.sol";

/**
 * @dev ERC-721 token with storage based token URI management.
 */
abstract contract ERC721URIStorage is IERC4906, ERC721 {
    using Strings for uint256;

    // Interface ID as defined in ERC-4906. This does not correspond to a traditional interface ID as ERC-4906 only
    // defines events and does not include any external function.
    bytes4 private constant ERC4906_INTERFACE_ID = bytes4(0x49064906);

    // Optional mapping for token URIs
    mapping(uint256 tokenId => string) private _tokenURIs;

    /**
     * @dev See {IERC165-supportsInterface}
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721, IERC165) returns (bool) {
        return interfaceId == ERC4906_INTERFACE_ID || super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        _requireOwned(tokenId);

        string memory _tokenURI = _tokenURIs[tokenId];
        string memory base = _baseURI();

        // If there is no base URI, return the token URI.
        if (bytes(base).length == 0) {
            return _tokenURI;
        }
        // If both are set, concatenate the baseURI and tokenURI (via string.concat).
        if (bytes(_tokenURI).length > 0) {
            return string.concat(base, _tokenURI);
        }

        return super.tokenURI(tokenId);
    }

    /**
     * @dev Sets `_tokenURI` as the tokenURI of `tokenId`.
     *
     * Emits {MetadataUpdate}.
     */
    function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual {
        _tokenURIs[tokenId] = _tokenURI;
        emit MetadataUpdate(tokenId);
    }
}
          

File 25 of 59: @openzeppelin/contracts/utils/math/SafeCast.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}
          

File 26 of 59: contracts/TokenBoundAccount/TokenBoundAccount.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {IERC1271} from "@openzeppelin/contracts/interfaces/IERC1271.sol";
import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import {ITokenBoundAccount} from "./interfaces/ITokenBoundAccount.sol";
import {TokenBoundAccountLib} from "./libraries/TokenBoundAccountLib.sol";

contract TokenBoundAccount is IERC165, IERC1271, ITokenBoundAccount {
    uint256 public nonce;

    receive() external payable {}

    function executeCall(
        address to,
        uint256 value,
        bytes calldata data
    ) external payable returns (bytes memory result) {
        require(msg.sender == owner(), "Not token owner");

        ++nonce;

        emit TransactionExecuted(to, value, data);

        bool success;
        (success, result) = to.call{value: value}(data);

        if (!success) {
            assembly {
                revert(add(result, 32), mload(result))
            }
        }
    }

    function token() external view returns (uint256, address, uint256) {
        return TokenBoundAccountLib.token();
    }

    function owner() public view returns (address) {
        (uint256 chainId, address tokenContract, uint256 tokenId) = this.token();
        if (chainId != block.chainid) return address(0);

        return IERC721(tokenContract).ownerOf(tokenId);
    }

    function supportsInterface(bytes4 interfaceId) public pure returns (bool) {
        return (interfaceId == type(IERC165).interfaceId || interfaceId == type(ITokenBoundAccount).interfaceId);
    }

    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue) {
        bool isValid = SignatureChecker.isValidSignatureNow(owner(), hash, signature);

        if (isValid) {
            return IERC1271.isValidSignature.selector;
        }

        return "";
    }
}
          

File 27 of 59: contracts/Marketplace/IMarketplace.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/**
 *  @title  Marketplace Interface
 *
 */
interface IMarketplace {
    enum ItemStatus {
        OPENING,
        SOLD,
        CLOSED
    }

    function makeItem(address _nft, uint256 _tokenId, address _paymentToken, uint256 _price, address _beneficiary) external;
    function closeItem(uint256 _itemId) external;

    error InvalidFeeReceiver();
    error InvalidFeePercent();
    error InvalidNft();
    error InvalidPrice();
    error InvalidBeneficiary();
    error NotPermittedToken();
    error NotExistedItem();
    error NotOpeningItem();
    error NotEnougnETH();
    error OnlyItemOwner();
}
          

File 28 of 59: @openzeppelin/contracts/utils/introspection/ERC165.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}
          

File 29 of 59: contracts/utils/Permission.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

/**
 *  @title  Permission
 *
 *  @notice This abstract contract provides a modifier to restrict the permission of functions.
 */
abstract contract Permission is Ownable {
    /* ******* */
    /* STORAGE */
    /* ******* */

    /**
     *  @notice _admins mapping from token ID to isAdmin status
     */
    mapping(address => bool) public admins;

    /* ****** */
    /* EVENTS */
    /* ****** */

    event SetAdmin(address indexed user, bool allow);

    /* ********* */
    /* ERRORS */
    /* ********* */
    error AdminUnauthorizedAccount(address account);
    error PermissionUnauthorizedAccount(address account);
    error InvalidAddress();
    error InvalidLength();

    /* ********* */
    /* MODIFIERS */
    /* ********* */

    /**
     * Throw exception of caller is not admin
     */
    modifier onlyAdmin() {
        if (owner() != _msgSender() && !admins[_msgSender()]) {
            revert AdminUnauthorizedAccount(_msgSender());
        }
        _;
    }

    /**
     * Throw exception if _account is not permitted
     * @param _account Account will be checked
     */
    modifier permittedTo(address _account) {
        if (_msgSender() != _account) {
            revert PermissionUnauthorizedAccount(_msgSender());
        }
        _;
    }

    /* ****************** */
    /* PUBLIC FUNCTIONS */
    /* ****************** */

    /**
     * @notice Add/Remove an admin.
     * @dev    Only owner can call this function.
     * @param _user user address
     * @param _allow Specific user will be set as admin or not
     */
    function setAdmin(address _user, bool _allow) public virtual onlyOwner {
        _setAdmin(_user, _allow);
    }

    /**
     * @notice Add/Remove an admin.
     * @dev    Only owner can call this function.
     * @param _users List of user address
     * @param _allow Specific users will be set as admin or not
     */
    function setAdmins(address[] memory _users, bool _allow) public virtual onlyOwner {
        if (_users.length == 0) revert InvalidLength();
        for (uint256 i = 0; i < _users.length; i++) {
            _setAdmin(_users[i], _allow);
        }
    }

    /* ****************** */
    /* INTERNAL FUNCTIONS */
    /* ****************** */

    /**
     * @notice Add/Remove an admin.
     * @dev    Only owner can call this function.
     * @param _user User address
     * @param _allow Specific user will be set as admin or not
     *
     * emit {SetAdmin} event
     */
    function _setAdmin(address _user, bool _allow) internal virtual {
        if (_user == address(0)) revert InvalidAddress();
        admins[_user] = _allow;
        emit SetAdmin(_user, _allow);
    }

    /* ****************** */
    /* VIEW FUNCTIONS */
    /* ****************** */

    /**
     * @notice Check account whether it is the admin role.
     * @dev Everyone can call
     * @param _account User's account will be checkedd
     */
    function isAdmin(address _account) external view returns (bool) {
        return owner() == _account || admins[_account];
    }
}
          

File 30 of 59: contracts/loans/direct/DirectLoanFixedOffer.sol

// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

import {DirectLoanBaseMinimal, NFTfiSigningUtils, LoanChecksAndCalculations} from "./DirectLoanBaseMinimal.sol";

/**
 * @title  DirectLoanFixed
 * @notice Main contract for Loan Direct Loans Fixed Type. This contract manages the ability to create NFT-backed
 * peer-to-peer loans of type Fixed (agreed to be a fixed-repayment loan) where the borrower pays the
 * maximumRepaymentAmount regardless of whether they repay early or not.
 *
 * There are two ways to commence an NFT-backed loan:
 *
 * a. The borrower accepts a lender's offer by calling `acceptOffer`.
 *   1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their
 * be1alf.
 *   2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their
 * behalf.
 *   3. the lender signs an off-chain message, proposing its offer terms.
 *   4. the borrower calls `acceptOffer` to accept these terms and enter into the loan. The NFT is stored in
 * the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender receives an
 * Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, or the
 * underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation receipt
 * (in ERC721 form) that gives them the right to pay back the loan and get the collateral back.
 *
 * b. The lender accepts a borrowe's binding terms by calling `acceptListing`.
 *   1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their
 * be1alf.
 *   2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their
 * behalf.
 *   3. the borrower signs an off-chain message, proposing its binding terms.
 *   4. the lender calls `acceptListing` with an offer matching the binding terms and enter into the loan. The NFT is
 * stored in the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender
 * receives an Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest,
 * or the underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation
 * receipt (in ERC721 form) that gives them the right to pay back the loan and get the collateral back.
 *
 * The lender can freely transfer and trade this ERC721 promissory note as they wish, with the knowledge that
 * transferring the ERC721 promissory note tranfsers the rights to principal-plus-interest and/or collateral, and that
 * they will no longer have a claim on the loan. The ERC721 promissory note itself represents that claim.
 *
 * The borrower can freely transfer and trade this ERC721 obligaiton receipt as they wish, with the knowledge that
 * transferring the ERC721 obligaiton receipt tranfsers the rights right to pay back the loan and get the collateral
 * back.
 *
 *
 * A loan may end in one of two ways:
 * - First, a borrower may call Loan.payBackLoan() and pay back the loan plus interest at any time, in which case they
 * receive their NFT back in the same transaction.
 * - Second, if the loan's duration has passed and the loan has not been paid back yet, a lender can call
 * Loan.liquidateOverdueLoan(), in which case they receive the underlying NFT collateral and forfeit the rights to the
 * principal-plus-interest, which the borrower now keeps.
 */
contract DirectLoanFixedOffer is DirectLoanBaseMinimal {
    /* *********** */
    /* CONSTRUCTOR */
    /* *********** */

    /**
     * @dev Sets `hub` and permitted erc20-s
     *
     * @param _admin - Initial admin of this contract.
     * @param  _permittedErc20s - list of permitted ERC20 token contract addresses
     */
    constructor(address _admin, address[] memory _permittedErc20s) DirectLoanBaseMinimal(_admin, _permittedErc20s) {
        // solhint-disable-previous-line no-empty-blocks
    }

    /* ********* */
    /* FUNCTIONS */
    /* ********* */

    /**
     * @notice This function is called by the borrower when accepting a lender's offer to begin a loan.
     *
     * @param _loanId - offchain id of loan
     * @param _offer - The offer made by the lender.
     * @param _signature - The components of the lender's signature.
     */
    function acceptOffer(bytes32 _loanId, Offer memory _offer, Signature memory _signature) external whenNotPaused nonReentrant {
        _loanSanityChecks(_offer);
        _loanSanityChecksOffer(_offer);

        address lender = _offer.lendingPool != address(0) ? _offer.lendingPool : _signature.signer;
        _acceptOffer(_loanId, _setupLoanTerms(_offer, lender), _offer, _signature);
    }

    /* ****************** */
    /* INTERNAL FUNCTIONS */
    /* ****************** */

    /**
     * @notice This function is called by the borrower when accepting a lender's offer to begin a loan.
     *
     * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan.
     * @param _offer - The offer made by the lender.
     * @param _signature - The components of the lender's signature.
     */
    function _acceptOffer(bytes32 _loanId, LoanTerms memory _loanTerms, Offer memory _offer, Signature memory _signature) internal {
        // Check loan nonces. These are different from Ethereum account nonces.
        // Here, these are uint256 numbers that should uniquely identify
        // each signature for each user (i.e. each user should only create one
        // off-chain signature for each nonce, with a nonce being any arbitrary
        // uint256 value that they have not used yet for an off-chain Loan
        // signature).
        require(!_nonceHasBeenUsedForUser[_signature.signer][_signature.nonce], "Lender nonce invalid");

        _nonceHasBeenUsedForUser[_signature.signer][_signature.nonce] = true;

        require(NFTfiSigningUtils.isValidLenderSignature(_offer, _signature), "Lender signature is invalid");

        _createLoan(_loanId, _loanTerms, msg.sender, _loanTerms.lender);

        // Emit an event with all relevant details from this transaction.
        emit LoanStarted(_loanId, msg.sender, _loanTerms.lender, _loanTerms);
    }

    /**
     * @dev Creates a `LoanTerms` struct using data sent as the lender's `_offer` on `acceptOffer`.
     * This is needed in order to avoid stack too deep issues.
     */
    function _setupLoanTerms(Offer memory _offer, address _lender) internal view returns (LoanTerms memory) {
        return
            LoanTerms({
                erc20Denomination: _offer.erc20Denomination,
                principalAmount: _offer.principalAmount,
                maximumRepaymentAmount: _offer.maximumRepaymentAmount,
                nftCollateralContract: _offer.nftCollateralContract,
                nftCollateralId: _offer.nftCollateralId,
                loanStartTime: uint64(block.timestamp),
                duration: _offer.duration,
                adminFeeInBasisPoints: _offer.adminFeeInBasisPoints,
                borrower: msg.sender,
                lender: _lender,
                useLendingPool: _offer.lendingPool != address(0)
            });
    }

    /**
     * @dev Calculates the payoff amount and admin fee
     *
     * @param _loanTerms - Struct containing all the loan's parameters
     */
    function _payoffAndFee(LoanTerms memory _loanTerms) internal pure override returns (uint256 adminFee, uint256 payoffAmount) {
        // Calculate amounts to send to lender and admins
        uint256 interestDue = _loanTerms.maximumRepaymentAmount - _loanTerms.principalAmount;
        adminFee = LoanChecksAndCalculations.computeAdminFee(interestDue, uint256(_loanTerms.adminFeeInBasisPoints));
        payoffAmount = _loanTerms.maximumRepaymentAmount - adminFee;
    }

    /**
     * @dev Function that performs some validation checks over loan parameters when accepting an offer
     *
     */
    function _loanSanityChecksOffer(Offer memory _offer) internal pure {
        require(_offer.maximumRepaymentAmount >= _offer.principalAmount, "Negative interest rate loans are not allowed.");
    }
}
          

File 31 of 59: contracts/LendingPool/LendingPool.sol

// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol";
import {Permission, Ownable} from "../utils/Permission.sol";
import {IMarketplace} from "../Marketplace/IMarketplace.sol";
import {ILendingStake} from "./interfaces/ILendingStake.sol";

/**
 * @title  LendingPool
 * @dev    A main management contract for lending pool.
 */
contract LendingPool is Permission, Pausable, ReentrancyGuard, ERC721Holder {
    using SafeERC20 for IERC20;

    address public loan;
    address public lendingStake;
    address public marketplace;

    event SetLoan(address indexed oldValue, address indexed newValue);
    event SetLendingStake(address indexed oldValue, address indexed newValue);
    event SetMarketplace(address indexed oldValue, address indexed newValue);
    event Disbursed(address indexed token, address indexed to, uint256 amount);
    event PaidBack(address indexed token, uint256 amount);
    event ListNftToMarket(address indexed nftContract, uint256 indexed nftTokenId, uint256 indexed price);

    constructor(address _initialOwner) Ownable(_initialOwner) {}

    /**
     * @dev called by the owner to set loan contract address
     */
    function setLoan(address _loan) external onlyOwner {
        if (_loan == address(0)) revert InvalidAddress();

        address _oldValue = loan;
        loan = _loan;
        emit SetLoan(_oldValue, loan);
    }

    /**
     * @dev called by the owner to set lending stake contract address
     */
    function setLendingStake(address _lendingStake) external onlyOwner {
        if (_lendingStake == address(0)) revert InvalidAddress();

        address _oldValue = lendingStake;
        lendingStake = _lendingStake;
        emit SetLendingStake(_oldValue, lendingStake);
    }

    /**
     * @dev called by the owner to set marketplace contract address
     */
    function setMarketplace(address _marketplace) external onlyOwner {
        if (_marketplace == address(0)) revert InvalidAddress();

        address _oldValue = marketplace;
        marketplace = _marketplace;
        emit SetMarketplace(_oldValue, marketplace);
    }

    /**
     * @dev called by loan contract to disburse token to borrower
     */
    function informDisburse(address _token, address _to, uint256 _amount) external nonReentrant whenNotPaused permittedTo(loan) {
        ILendingStake(lendingStake).approve(_amount);
        IERC20(_token).safeTransferFrom(lendingStake, _to, _amount);
        emit Disbursed(_token, _to, _amount);
    }

    /**
     * @dev called by loan contract to pay back token to lending stake
     */
    function informPayBack(address _token, uint256 _principal) external whenNotPaused permittedTo(loan) {
        IERC20(_token).safeTransfer(lendingStake, _principal);
        emit PaidBack(_token, _principal);
    }

    /**
     * @dev called by the owner to list NFT to marketplace
     */
    function listNftToMarket(address _nftContract, uint256 _nftTokenId, uint256 _price) external whenNotPaused onlyAdmin {
        IERC721(_nftContract).approve(marketplace, _nftTokenId);
        IMarketplace(marketplace).makeItem(_nftContract, _nftTokenId, ILendingStake(lendingStake).wXENE(), _price, lendingStake);
    }

    /**
     * @dev called by the owner to withdraw NFT from marketplace
     */
    function withdrawNftFromMarket(uint256 _marketItemId) external whenNotPaused onlyAdmin {
        IMarketplace(marketplace).closeItem(_marketItemId);
    }

    /**
     * @dev called by lending stake contract to approve token to pay rewards
     */
    function approveToPayRewards(address _token, uint256 _amount) external whenNotPaused permittedTo(lendingStake) {
        IERC20(_token).approve(lendingStake, _amount);
    }

    /**
     * @dev called by the owner to rescue token from contract
     */
    function rescueToken(address _token, address _to, uint256 _amount) external onlyOwner {
        if (_to == address(0)) revert InvalidAddress();
        IERC20(_token).safeTransfer(_to, _amount);
    }

    /**
     * @dev called by the owner to rescue nft from contract
     */
    function rescueNft(address _nftContract, uint256 _nftTokenId, address _to) external onlyOwner {
        if (_to == address(0)) revert InvalidAddress();
        IERC721(_nftContract).transferFrom(address(this), _to, _nftTokenId);
    }

    /**
     * @dev called by the owner to pause, triggers stopped state
     */
    function pause() external onlyOwner whenNotPaused {
        _pause();
    }

    /**
     * @dev called by the owner to unpause, returns to normal state
     */
    function unpause() external onlyOwner whenPaused {
        _unpause();
    }
}
          

File 32 of 59: @openzeppelin/contracts/utils/ReentrancyGuard.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}
          

File 33 of 59: @openzeppelin/contracts/token/ERC721/ERC721.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "./IERC721.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {ERC721Utils} from "./utils/ERC721Utils.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    mapping(uint256 tokenId => address) private _owners;

    mapping(address owner => uint256) private _balances;

    mapping(uint256 tokenId => address) private _tokenApprovals;

    mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual returns (uint256) {
        if (owner == address(0)) {
            revert ERC721InvalidOwner(address(0));
        }
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual returns (address) {
        return _requireOwned(tokenId);
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
        _requireOwned(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual {
        _approve(to, tokenId, _msgSender());
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual returns (address) {
        _requireOwned(tokenId);

        return _getApproved(tokenId);
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
        // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
        address previousOwner = _update(to, tokenId, _msgSender());
        if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
        transferFrom(from, to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     *
     * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
     * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances
     * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
     * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
     */
    function _getApproved(uint256 tokenId) internal view virtual returns (address) {
        return _tokenApprovals[tokenId];
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
     * particular (ignoring whether it is owned by `owner`).
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
        return
            spender != address(0) &&
            (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
    }

    /**
     * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
     * Reverts if:
     * - `spender` does not have approval from `owner` for `tokenId`.
     * - `spender` does not have approval to manage all of `owner`'s assets.
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
        if (!_isAuthorized(owner, spender, tokenId)) {
            if (owner == address(0)) {
                revert ERC721NonexistentToken(tokenId);
            } else {
                revert ERC721InsufficientApproval(spender, tokenId);
            }
        }
    }

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
     * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
     *
     * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
     * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
     * remain consistent with one another.
     */
    function _increaseBalance(address account, uint128 value) internal virtual {
        unchecked {
            _balances[account] += value;
        }
    }

    /**
     * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
     * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that
     * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
     *
     * Emits a {Transfer} event.
     *
     * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
        address from = _ownerOf(tokenId);

        // Perform (optional) operator check
        if (auth != address(0)) {
            _checkAuthorized(from, auth, tokenId);
        }

        // Execute the update
        if (from != address(0)) {
            // Clear approval. No need to re-authorize or emit the Approval event
            _approve(address(0), tokenId, address(0), false);

            unchecked {
                _balances[from] -= 1;
            }
        }

        if (to != address(0)) {
            unchecked {
                _balances[to] += 1;
            }
        }

        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        return from;
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner != address(0)) {
            revert ERC721InvalidSender(address(0));
        }
    }

    /**
     * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal {
        address previousOwner = _update(address(0), tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        } else if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
     * are aware of the ERC-721 standard to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is like {safeTransferFrom} in the sense that it invokes
     * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `tokenId` token must exist and be owned by `from`.
     * - `to` cannot be the zero address.
     * - `from` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId) internal {
        _safeTransfer(from, to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
     * either the owner of the token, or approved to operate on all tokens held by this owner.
     *
     * Emits an {Approval} event.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address to, uint256 tokenId, address auth) internal {
        _approve(to, tokenId, auth, true);
    }

    /**
     * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
     * emitted in the context of transfers.
     */
    function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
        // Avoid reading the owner unless necessary
        if (emitEvent || auth != address(0)) {
            address owner = _requireOwned(tokenId);

            // We do not use _isAuthorized because single-token approvals should not be able to call approve
            if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                revert ERC721InvalidApprover(auth);
            }

            if (emitEvent) {
                emit Approval(owner, to, tokenId);
            }
        }

        _tokenApprovals[tokenId] = to;
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Requirements:
     * - operator can't be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC721InvalidOperator(operator);
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
     * Returns the owner.
     *
     * Overrides to ownership logic should be done to {_ownerOf}.
     */
    function _requireOwned(uint256 tokenId) internal view returns (address) {
        address owner = _ownerOf(tokenId);
        if (owner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
        return owner;
    }
}
          

File 34 of 59: @openzeppelin/contracts/interfaces/IERC4906.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4906.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";
import {IERC721} from "./IERC721.sol";

/// @title ERC-721 Metadata Update Extension
interface IERC4906 is IERC165, IERC721 {
    /// @dev This event emits when the metadata of a token is changed.
    /// So that the third-party platforms such as NFT market could
    /// timely update the images and related attributes of the NFT.
    event MetadataUpdate(uint256 _tokenId);

    /// @dev This event emits when the metadata of a range of tokens is changed.
    /// So that the third-party platforms such as NFT market could
    /// timely update the images and related attributes of the NFTs.
    event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}
          

File 35 of 59: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}
          

File 36 of 59: contracts/loans/direct/LoanData.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/**
 * @title  LoanData
 * @notice An interface containg the main Loan struct shared by Direct Loans types.
 */
interface LoanData {
    /* ********** */
    /* DATA TYPES */
    /* ********** */

    /**
     * @notice The main Loan Terms struct. This data is saved upon loan creation.
     *
     * @param erc20Denomination - The address of the ERC20 contract of the currency being used as principal/interest
     * for this loan.
     * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of
     * the loan, measured in erc20Denomination's smallest units.
     * @param maximumRepaymentAmount - The maximum amount of money that the borrower would be required to retrieve their
     * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have
     * to pay this amount to retrieve their collateral, regardless of whether they repay early.
     * @param nftCollateralContract - The address of the the NFT collateral contract.
     * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this
     * loan. The NFT is stored within this contract during the duration of the loan.
     * @param loanStartTime - The block.timestamp when the loan first began (measured in seconds).
     * @param duration - The amount of time (measured in seconds) that can elapse before the lender can liquidate
     * the loan and seize the underlying collateral NFT.
     * @param adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be
     * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an
     * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest
     * earned.
     * @param lender - Address of lender
     * @param useLendingPool - If true, lender is a contract
     */
    struct LoanTerms {
        uint256 principalAmount;
        uint256 maximumRepaymentAmount;
        uint256 nftCollateralId;
        address erc20Denomination;
        uint32 duration;
        uint16 adminFeeInBasisPoints;
        uint64 loanStartTime;
        address nftCollateralContract;
        address borrower;
        address lender;
        bool useLendingPool;
    }

    /**
     * @notice The offer made by the lender. Used as parameter on both acceptOffer (initiated by the borrower) and
     * acceptListing (initiated by the lender).
     *
     * @param erc20Denomination - The address of the ERC20 contract of the currency being used as principal/interest
     * for this loan.
     * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of
     * the loan, measured in erc20Denomination's smallest units.
     * @param maximumRepaymentAmount - The maximum amount of money that the borrower would be required to retrieve their
     *  collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always
     * have to pay this amount to retrieve their collateral, regardless of whether they repay early.
     * @param nftCollateralContract - The address of the ERC721 contract of the NFT collateral.
     * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this
     * loan. The NFT is stored within this contract during the duration of the loan.
     * @param referrer - The address of the referrer who found the lender matching the listing, Zero address to signal
     * this there is no referrer.
     * @param duration - The amount of time (measured in seconds) that can elapse before the lender can liquidate
     * the loan and seize the underlying collateral NFT.
     * @param adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be
     * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an
     * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest
     * earned.
     * @param lendingPool - Lending pool address is contract that will disburse loan, signature signer must
     * be admin of contract If lender is a wallet, this address must be ZERO address
     */
    struct Offer {
        uint256 principalAmount;
        uint256 maximumRepaymentAmount;
        uint256 nftCollateralId;
        address nftCollateralContract;
        uint32 duration;
        uint16 adminFeeInBasisPoints;
        address erc20Denomination;
        address lendingPool;
    }

    /**
     * @notice Signature related params. Used as parameter on both acceptOffer (containing borrower signature) and
     * acceptListing (containing lender signature).
     *
     * @param signer - The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`.
     * @param nonce - The nonce referred here is not the same as an Ethereum account's nonce.
     * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing
     * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun()
     * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains
     * that nonce.
     * @param expiry - Date when the signature expires
     * @param signature - The ECDSA signature of the borrower or the lender, obtained off-chain ahead of time, signing
     * the following combination of parameters:
     * - Lender:
     *   - Offer.erc20Denomination
     *   - Offer.principalAmount
     *   - Offer.maximumRepaymentAmount
     *   - Offer.nftCollateralContract
     *   - Offer.nftCollateralId
     *   - Offer.duration
     *   - Offer.adminFeeInBasisPoints
     *   - Offer.useLendingPool
     *   - Offer.lendingPool
     *   - Signature.signer,
     *   - Signature.nonce,
     *   - Signature.expiry,
     *   - address of the loan type contract
     *   - chainId
     */
    struct Signature {
        uint256 nonce;
        uint256 expiry;
        address signer;
        bytes signature;
    }
}
          

File 37 of 59: @openzeppelin/contracts/interfaces/IERC165.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";
          

File 38 of 59: @openzeppelin/contracts/utils/math/Math.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}
          

File 39 of 59: contracts/WXENE.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract WXENE is ERC20 {
    event Minted(address account, uint256 amount);
    event Burnt(address account, uint256 amount);

    error TransferNativeFailed();

    /* *********** */
    /* CONSTRUCTOR */
    /* *********** */
    constructor() ERC20("Wrapped XENE", "wXENE") {}

    /* ****************** */
    /* EXTERNAL FUNCTIONS */
    /* ****************** */

    /**
     * @notice Mint wXENE to user
     * @dev Everyone can call this function
     *
     * emit {Minted} event
     */
    function mint() external payable {
        _mint(_msgSender(), msg.value);

        emit Minted(_msgSender(), msg.value);
    }

    /**
     * @notice Mint wXENE to a specific user
     * @dev Everyone can call this function
     *
     * emit {Minted} event
     */
    function mintTo(address _receiver) external payable {
        _mint(_receiver, msg.value);

        emit Minted(_receiver, msg.value);
    }

    /**
     * @notice Burn wXENE and transfer XENE to user
     * @param _amount Amount of token
     *
     * emit {Burnt} event
     */
    function burn(uint256 _amount) external {
        _burn(_msgSender(), _amount);
        (bool success, ) = (_msgSender()).call{value: _amount}("");
        if (!success) revert TransferNativeFailed();

        emit Burnt(_msgSender(), _amount);
    }
}
          

File 40 of 59: @openzeppelin/contracts/token/ERC20/IERC20.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}
          

File 41 of 59: @openzeppelin/contracts/utils/math/SignedMath.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}
          

File 42 of 59: contracts/loans/direct/DirectLoanBaseMinimal.sol

// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

import {IDirectLoanBase} from "./IDirectLoanBase.sol";
import {LoanData} from "./LoanData.sol";
import {LoanChecksAndCalculations} from "./LoanChecksAndCalculations.sol";
import {BaseLoan} from "../BaseLoan.sol";
import {NFTfiSigningUtils, ILendingPool} from "../utils/NFTfiSigningUtils.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

/**
 * @title  DirectLoanBase
 * @notice Main contract for Loan Direct Loans Type. This contract manages the ability to create NFT-backed
 * peer-to-peer loans.
 *
 * There are two ways to commence an NFT-backed loan:
 *
 * a. The borrower accepts a lender's offer by calling `acceptOffer`.
 *   1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their
 * be1alf.
 *   2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their
 * behalf.
 *   3. the lender signs an off-chain message, proposing its offer terms.
 *   4. the borrower calls `acceptOffer` to accept these terms and enter into the loan. The NFT is stored in
 * the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender receives an
 * Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, or the
 * underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation receipt
 * (in ERC721 form) that gives them the right to pay back the loan and get the collateral back.
 *
 * b. The lender accepts a borrowe's binding terms by calling `acceptListing`.
 *   1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their
 * be1alf.
 *   2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their
 * behalf.
 *   3. the borrower signs an off-chain message, proposing its binding terms.
 *   4. the lender calls `acceptListing` with an offer matching the binding terms and enter into the loan. The NFT is
 * stored in the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender
 * receives an Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest,
 * or the underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation
 * receipt (in ERC721 form) that gives them the right to pay back the loan and get the collateral back.
 *
 * The lender can freely transfer and trade this ERC721 promissory note as they wish, with the knowledge that
 * transferring the ERC721 promissory note tranfsers the rights to principal-plus-interest and/or collateral, and that
 * they will no longer have a claim on the loan. The ERC721 promissory note itself represents that claim.
 *
 * The borrower can freely transfer and trade this ERC721 obligaiton receipt as they wish, with the knowledge that
 * transferring the ERC721 obligaiton receipt tranfsers the rights right to pay back the loan and get the collateral
 * back.
 *
 * A loan may end in one of two ways:
 * - First, a borrower may call Loan.payBackLoan() and pay back the loan plus interest at any time, in which case they
 * receive their NFT back in the same transaction.
 * - Second, if the loan's duration has passed and the loan has not been paid back yet, a lender can call
 * Loan.liquidateOverdueLoan(), in which case they receive the underlying NFT collateral and forfeit the rights to the
 * principal-plus-interest, which the borrower now keeps.
 *
 *
 * If the loan was created as a ProRated type loan (pro-rata interest loan), then the user only pays the principal plus
 * pro-rata interest if repaid early.
 * However, if the loan was was created as a Fixed type loan (agreed to be a fixed-repayment loan), then the borrower
 * pays the maximumRepaymentAmount regardless of whether they repay early or not.
 *
 */
abstract contract DirectLoanBaseMinimal is IDirectLoanBase, BaseLoan, ERC721Holder, LoanData {
    using SafeERC20 for IERC20;

    /* ******* */
    /* STORAGE */
    /* ******* */

    uint16 public constant HUNDRED_PERCENT = 10000;

    /**
     * @notice The maximum duration of any loan started for this loan type, measured in seconds. This is both a
     * sanity-check for borrowers and an upper limit on how long admins will have to support v1 of this contract if they
     * eventually deprecate it, as well as a check to ensure that the loan duration never exceeds the space alotted for
     * it in the loan struct.
     */
    uint256 public override maximumLoanDuration = 53 weeks;

    /**
     * @notice The percentage of interest earned by lenders on this platform that is taken by the contract admin's as a
     * fee, measured in basis points (hundreths of a percent). The max allowed value is 10000.
     */
    uint16 public override adminFeeInBasisPoints = 25;

    /**
     * @notice A mapping from a loan's identifier to the loan's details, represted by the loan struct.
     */
    mapping(bytes32 => LoanTerms) public loanIdToLoan;

    /**
     * @notice A mapping tracking whether a loan has either been repaid or liquidated. This prevents an attacker trying
     * to repay or liquidate the same loan twice.
     */
    mapping(bytes32 => bool) public loanRepaidOrLiquidated;

    /**
     * @dev keeps track of tokens being held as loan collateral, so we dont allow these
     * to be transferred with the aridrop draining functions
     */
    mapping(address => mapping(uint256 => uint256)) private _escrowTokens;

    /**
     * @notice A mapping that takes both a user's address and a loan nonce that was first used when signing an off-chain
     * order and checks whether that nonce has previously either been used for a loan, or has been pre-emptively
     * cancelled. The nonce referred to here is not the same as an Ethereum account's nonce. We are referring instead to
     * nonces that are used by both the lender and the borrower when they are first signing off-chain Loan orders.
     *
     * These nonces can be any uint256 value that the user has not previously used to sign an off-chain order. Each
     * nonce can be used at most once per user within Loan, regardless of whether they are the lender or the borrower
     * in that situation. This serves two purposes. First, it prevents replay attacks where an attacker would submit a
     * user's off-chain order more than once. Second, it allows a user to cancel an off-chain order by calling
     * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from
     * using the user's off-chain order that contains that nonce.
     */
    mapping(address => mapping(uint256 => bool)) internal _nonceHasBeenUsedForUser;

    /**
     * @notice A mapping from an ERC20 currency address to whether that currency
     * is permitted to be used by this contract.
     */
    mapping(address => bool) private erc20Permits;

    /**
     * @notice A mapping from an NFT contract's address to the Token type of that contract. A zero Token Type indicates
     * non-permitted.
     */
    mapping(address => bool) private nftPermits;

    /* ****** */
    /* EVENTS */
    /* ****** */

    /**
     * @notice This event is fired whenever the admins change the percent of interest rates earned that they charge as a
     * fee. Note that newAdminFee can never exceed 10,000, since the fee is measured in basis points.
     *
     * @param newAdminFee - The new admin fee measured in basis points. This is a percent of the interest paid upon a
     * loan's completion that go to the contract admins.
     */
    event AdminFeeUpdated(uint16 newAdminFee);

    /**
     * @notice This event is fired whenever the admins change the maximum duration of any loan started for this loan
     * type.
     *
     * @param newMaximumLoanDuration - The new maximum duration.
     */
    event MaximumLoanDurationUpdated(uint256 newMaximumLoanDuration);

    /**
     * @notice This event is fired whenever a borrower begins a loan by calling Loan.beginLoan(), which can only occur
     * after both the lender and borrower have approved their ERC721 and ERC20 contracts to use Loan, and when they
     * both have signed off-chain messages that agree on the terms of the loan.
     *
     * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator.
     * @param borrower - The address of the borrower.
     * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721
     * token that they received when the loan began.
     */
    event LoanStarted(bytes32 indexed loanId, address indexed borrower, address indexed lender, LoanTerms loanTerms);

    /**
     * @notice This event is fired whenever a borrower successfully repays their loan, paying
     * principal-plus-interest-minus-fee to the lender in erc20Denomination, paying fee to owner in
     * erc20Denomination, and receiving their NFT collateral back.
     *
     * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator.
     * @param borrower - The address of the borrower.
     * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721
     * token that they received when the loan began.
     * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of
     * the loan, measured in erc20Denomination's smallest units.
     * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this
     * loan. The NFT is stored within this contract during the duration of the loan.
     * @param amountPaidToLender - The amount of ERC20 that the borrower paid to the lender, measured in the smalled
     * units of erc20Denomination.
     * @param adminFee - The amount of interest paid to the contract admins, measured in the smalled units of
     * erc20Denomination and determined by adminFeeInBasisPoints. This amount never exceeds the amount of interest
     * earned.
     * @param interest - The amount of interest paid to the lender.
     * @param nftCollateralContract - The ERC721 contract of the NFT collateral
     * @param erc20Denomination - The ERC20 contract of the currency being used as principal/interest for this
     * loan.
     */
    event LoanRepaid(
        bytes32 indexed loanId,
        address indexed borrower,
        address indexed lender,
        uint256 principalAmount,
        uint256 nftCollateralId,
        uint256 amountPaidToLender,
        uint256 adminFee,
        uint256 interest,
        address nftCollateralContract,
        address erc20Denomination
    );

    /**
     * @notice This event is fired whenever a lender liquidates an outstanding loan that is owned to them that has
     * exceeded its duration. The lender receives the underlying NFT collateral, and the borrower no longer needs to
     * repay the loan principal-plus-interest.
     *
     * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator.
     * @param borrower - The address of the borrower.
     * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721
     * token that they received when the loan began.
     * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of
     * the loan, measured in erc20Denomination's smallest units.
     * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this
     * loan. The NFT is stored within this contract during the duration of the loan.
     * @param loanMaturityDate - The unix time (measured in seconds) that the loan became due and was eligible for
     * liquidation.
     * @param loanLiquidationDate - The unix time (measured in seconds) that liquidation occurred.
     * @param nftCollateralContract - The ERC721 contract of the NFT collateral
     */
    event LoanLiquidated(
        bytes32 indexed loanId,
        address indexed borrower,
        address indexed lender,
        uint256 principalAmount,
        uint256 nftCollateralId,
        uint256 loanMaturityDate,
        uint256 loanLiquidationDate,
        address nftCollateralContract
    );

    /**
     * @notice This event is fired when some of the terms of a loan are being renegotiated.
     *
     * @param loanId - The unique identifier for the loan to be renegotiated
     * @param newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can
     * liquidate the loan and seize the underlying collateral NFT.
     * @param newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to
     * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The
     * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay
     * early.
     * @param renegotiationFee Agreed upon fee in loan denomination that borrower pays for the lender for the
     * renegotiation, has to be paid with an ERC20 transfer erc20Denomination token, uses transfer from,
     * frontend will have to propmt an erc20 approve for this from the borrower to the lender
     * @param renegotiationAdminFee renegotiationFee admin portion based on determined by adminFeeInBasisPoints
     */
    event LoanRenegotiated(
        bytes32 indexed loanId,
        address indexed borrower,
        address indexed lender,
        uint32 newLoanDuration,
        uint256 newMaximumRepaymentAmount,
        uint256 renegotiationFee,
        uint256 renegotiationAdminFee
    );

    /**
     * @notice This event is fired whenever the admin sets a ERC20 permit.
     *
     * @param erc20Contract - Address of the ERC20 contract.
     * @param isPermitted - Signals ERC20 permit.
     */
    event ERC20Permit(address indexed erc20Contract, bool isPermitted);

    /* *********** */
    /* CONSTRUCTOR */
    /* *********** */

    /**
     * @dev Sets `permittedNFTs`
     *
     * @param _admin - Initial admin of this contract.
     * @param  _permittedErc20s -
     */
    constructor(address _admin, address[] memory _permittedErc20s) BaseLoan(_admin) {
        for (uint256 i = 0; i < _permittedErc20s.length; i++) {
            _setERC20Permit(_permittedErc20s[i], true);
        }
    }

    /**
     * @notice This function can be called by admins to change the maximumLoanDuration. Note that they can never change
     * maximumLoanDuration to be greater than UINT32_MAX, since that's the maximum space alotted for the duration in the
     * loan struct.
     *
     * @param _newMaximumLoanDuration - The new maximum loan duration, measured in seconds.
     *
     * emit {MaximumLoanDurationUpdated} event
     */
    function updateMaximumLoanDuration(uint256 _newMaximumLoanDuration) external onlyOwner {
        require(_newMaximumLoanDuration <= uint256(type(uint32).max), "Loan duration overflow");
        maximumLoanDuration = _newMaximumLoanDuration;
        emit MaximumLoanDurationUpdated(_newMaximumLoanDuration);
    }

    /**
     * @notice This function can be called by admins to change the percent of interest rates earned that they charge as
     * a fee. Note that newAdminFee can never exceed 10,000, since the fee is measured in basis points.
     *
     * @param _newAdminFeeInBasisPoints - The new admin fee measured in basis points. This is a percent of the interest
     * paid upon a loan's completion that go to the contract admins.
     *
     * emit {AdminFeeUpdated} event
     */
    function updateAdminFee(uint16 _newAdminFeeInBasisPoints) external onlyOwner {
        require(_newAdminFeeInBasisPoints <= HUNDRED_PERCENT, "basis points > 10000");
        adminFeeInBasisPoints = _newAdminFeeInBasisPoints;
        emit AdminFeeUpdated(_newAdminFeeInBasisPoints);
    }

    /**
     * @notice used by the owner account to be able to drain ERC20 tokens received as airdrops
     * for the locked  collateral NFT-s
     * @param _tokenAddress - address of the token contract for the token to be sent out
     * @param _receiver - receiver of the token
     */
    function drainERC20Airdrop(address _tokenAddress, address _receiver) external onlyOwner {
        IERC20 tokenContract = IERC20(_tokenAddress);
        uint256 amount = tokenContract.balanceOf(address(this));
        IERC20(_tokenAddress).safeTransfer(_receiver, amount);
    }

    /**
     * @notice This function can be called by admins to change the permitted status of an ERC20 currency. This includes
     * both adding an ERC20 currency to the permitted list and removing it.
     *
     * @param _erc20 - The address of the ERC20 currency whose permit list status changed.
     * @param _permit - The new status of whether the currency is permitted or not.
     */
    function setERC20Permit(address _erc20, bool _permit) external onlyOwner {
        _setERC20Permit(_erc20, _permit);
    }

    /**
     * @notice This function changes the permitted list status of an NFT contract. This includes both adding an NFT
     * contract to the permitted list and removing it.
     * @param _nftContract - The address of the NFT contract.
     * @param _isPermitted - true - enable / false - disable
     */
    function setNFTPermit(address _nftContract, bool _isPermitted) external onlyOwner {
        require(_nftContract != address(0), "Invalid nft address");
        nftPermits[_nftContract] = _isPermitted;
    }

    /**
     * @notice used by the owner account to be able to drain ERC721 tokens received as airdrops
     * for the locked  collateral NFT-s
     * @param _tokenAddress - address of the token contract for the token to be sent out
     * @param _tokenId - id token to be sent out
     * @param _receiver - receiver of the token
     */
    function drainERC721Airdrop(address _tokenAddress, uint256 _tokenId, address _receiver) external onlyOwner {
        require(_escrowTokens[_tokenAddress][_tokenId] == 0, "token is collateral");
        IERC721(_tokenAddress).transferFrom(address(this), _receiver, _tokenId);
    }

    /**
     * @dev makes possible to change loan duration and max repayment amount, loan duration even can be extended if
     * loan was expired but not liquidated.
     *
     * @param _loanId - The unique identifier for the loan to be renegotiated
     * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can
     * liquidate the loan and seize the underlying collateral NFT.
     * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to
     * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The
     * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay
     * early.
     * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation
     * @param _signature - The components of the lender's signature.
     * following combination of parameters:
     * - _loanId
     * - _newLoanDuration
     * - _newMaximumRepaymentAmount
     * - _lender
     * - _expiry - The date when the renegotiation offer expires
     *  - address of this contract
     * - chainId
     */
    function renegotiateLoan(
        bytes32 _loanId,
        uint32 _newLoanDuration,
        uint256 _newMaximumRepaymentAmount,
        uint256 _renegotiationFee,
        Signature calldata _signature
    ) external whenNotPaused nonReentrant {
        _renegotiateLoan(_loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, _signature);
    }

    /**
     * @notice This function is called by a anyone to repay a loan. It can be called at any time after the loan has
     * begun and before loan expiry.. The caller will pay a pro-rata portion of their interest if the loan is paid off
     * early and the loan is pro-rated type, but the complete repayment amount if it is fixed type.
     * The the borrower (current owner of the obligation note) will get the collaterl NFT back.
     *
     * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause the
     * contract and hold hostage the NFT's that are still within it.
     *
     * @param _loanId  A unique identifier for this particular loan, sourced from the Loan Coordinator.
     */
    function payBackLoan(bytes32 _loanId) external whenNotPaused nonReentrant {
        LoanChecksAndCalculations.payBackChecks(_loanId);
        (address borrower, address lender, LoanTerms memory loan) = _getPartiesAndData(_loanId);

        _payBackLoan(_loanId, borrower, lender, loan);

        _resolveLoan(_loanId, borrower, loan);

        // Delete the loan from storage in order to achieve a substantial gas savings and to lessen the burden of
        // storage on Ethereum nodes, since we will never access this loan's details again, and the details are still
        // available through event data.
        delete loanIdToLoan[_loanId];
    }

    /**
     * @notice This function is called by a lender once a loan has finished its duration and the borrower still has not
     * repaid. The lender can call this function to seize the underlying NFT collateral, although the lender gives up
     * all rights to the principal-plus-collateral by doing so.
     *
     * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause
     * the contract and hold hostage the NFT's that are still within it.
     *
     * We intentionally allow anybody to call this function, although only the lender will end up receiving the seized
     * collateral. We are exploring the possbility of incentivizing users to call this function by using some of the
     * admin funds.
     *
     * @param _loanId  A unique identifier for this particular loan, sourced from the Loan Coordinator.
     *
     * emit {LoanLiquidated} event
     */
    function liquidateOverdueLoan(bytes32 _loanId) external whenNotPaused nonReentrant {
        // Sanity check that payBackLoan() and liquidateOverdueLoan() have never been called on this loanId.
        // Depending on how the rest of the code turns out, this check may be unnecessary.
        LoanChecksAndCalculations.checkLoanIdValidity(_loanId);

        (address borrower, address lender, LoanTerms memory loan) = _getPartiesAndData(_loanId);

        // Ensure that the loan is indeed overdue, since we can only liquidate overdue loans.
        uint256 loanMaturityDate = uint256(loan.loanStartTime) + uint256(loan.duration);
        require(block.timestamp > loanMaturityDate, "Loan is not overdue yet");

        if (loan.useLendingPool) {
            require(ILendingPool(lender).isAdmin(msg.sender), "Only Lending pool admin can liquidate");
        } else {
            require(msg.sender == lender, "Only lender can liquidate");
        }

        _resolveLoan(_loanId, lender, loan);

        // Emit an event with all relevant details from this transaction.
        emit LoanLiquidated(_loanId, borrower, lender, loan.principalAmount, loan.nftCollateralId, loanMaturityDate, block.timestamp, loan.nftCollateralContract);

        // Delete the loan from storage in order to achieve a substantial gas savings and to lessen the burden of
        // storage on Ethereum nodes, since we will never access this loan's details again, and the details are still
        // available through event data.
        delete loanIdToLoan[_loanId];
    }

    /**
     * @notice This function can be called by either a lender or a borrower to cancel all off-chain orders that they
     * have signed that contain this nonce. If the off-chain orders were created correctly, there should only be one
     * off-chain order that contains this nonce at all.
     *
     * The nonce referred to here is not the same as an Ethereum account's nonce. We are referring
     * instead to nonces that are used by both the lender and the borrower when they are first signing off-chain Loan
     * orders. These nonces can be any uint256 value that the user has not previously used to sign an off-chain order.
     * Each nonce can be used at most once per user within Loan, regardless of whether they are the lender or the
     * borrower in that situation. This serves two purposes. First, it prevents replay attacks where an attacker would
     * submit a user's off-chain order more than once. Second, it allows a user to cancel an off-chain order by calling
     * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from
     * using the user's off-chain order that contains that nonce.
     *
     * @param _nonce - User nonce
     */
    function cancelLoanCommitmentBeforeLoanHasBegun(uint256 _nonce) external whenNotPaused {
        require(!_nonceHasBeenUsedForUser[msg.sender][_nonce], "Invalid nonce");
        _nonceHasBeenUsedForUser[msg.sender][_nonce] = true;
    }

    /* ******************* */
    /* READ-ONLY FUNCTIONS */
    /* ******************* */

    /**
     * @notice This function can be used to view whether a particular nonce for a particular user has already been used,
     * either from a successful loan or a cancelled off-chain order.
     *
     * @param _user - The address of the user. This function works for both lenders and borrowers alike.
     * @param _nonce - The nonce referred to here is not the same as an Ethereum account's nonce. We are referring
     * instead to nonces that are used by both the lender and the borrower when they are first signing off-chain
     * Loan orders. These nonces can be any uint256 value that the user has not previously used to sign an off-chain
     * order. Each nonce can be used at most once per user within Loan, regardless of whether they are the lender or
     * the borrower in that situation. This serves two purposes:
     * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun()
     * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains
     * that nonce.
     *
     * @return A bool representing whether or not this nonce has been used for this user.
     */
    function getWhetherNonceHasBeenUsedForUser(address _user, uint256 _nonce) external view override returns (bool) {
        return _nonceHasBeenUsedForUser[_user][_nonce];
    }

    /**
     * @notice This function can be called by anyone to get the permit associated with the erc20 contract.
     *
     * @param _erc20 - The address of the erc20 contract.
     *
     * @return Returns whether the erc20 is permitted
     */
    function getERC20Permit(address _erc20) public view returns (bool) {
        return erc20Permits[_erc20];
    }

    /**
     * @notice This function can be called by anyone to get the permit associated with the erc20 contract.
     *
     * @param _nftContract - The address of the NFT contract.
     *
     * @return Returns whether the erc20 is permitted
     */
    function getNftPermit(address _nftContract) public view returns (bool) {
        return nftPermits[_nftContract];
    }

    /* ****************** */
    /* INTERNAL FUNCTIONS */
    /* ****************** */

    /**
     * @dev makes possible to change loan duration and max repayment amount, loan duration even can be extended if
     * loan was expired but not liquidated. IMPORTANT: Frontend will have to propt the caller to do an ERC20 approve for
     * the fee amount from themselves (borrower/obligation reciept holder) to the lender (promissory note holder)
     *
     * @param _loanId - The unique identifier for the loan to be renegotiated
     * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can
     * liquidate the loan and seize the underlying collateral NFT.
     * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to
     * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The
     * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay
     * early.
     * @param _renegotiationFee Agreed upon fee in loan denomination that borrower pays for the lender and
     * the admin for the renegotiation, has to be paid with an ERC20 transfer erc20Denomination token,
     * uses transfer from, frontend will have to propmt an erc20 approve for this from the borrower to the lender,
     * admin fee is calculated by the loan's adminFeeInBasisPoints value
     * @param _signature - The components of the lender's signature.
     * following combination of parameters:
     * - _loanId
     * - _newLoanDuration
     * - _newMaximumRepaymentAmount
     * - _lender
     * - _expiry - The date when the renegotiation offer expires
     * - address of this contract
     * - chainId
     * 
     * emit {LoanRenegotiated} event
     */
    function _renegotiateLoan(
        bytes32 _loanId,
        uint32 _newLoanDuration,
        uint256 _newMaximumRepaymentAmount,
        uint256 _renegotiationFee,
        Signature calldata _signature
    ) internal {
        LoanTerms storage loan = loanIdToLoan[_loanId];

        (address borrower, address lender) = LoanChecksAndCalculations.renegotiationChecks(loan, _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _signature.nonce);

        _nonceHasBeenUsedForUser[lender][_signature.nonce] = true;

        require(
            NFTfiSigningUtils.isValidLenderRenegotiationSignature(
                _loanId,
                _newLoanDuration,
                _newMaximumRepaymentAmount,
                _renegotiationFee,
                loan,
                _signature
            ),
            "Renegotiation signature is invalid"
        );

        uint256 renegotiationAdminFee = 0;
        /**
         * @notice Transfers fee to the lender immediately
         * @dev implements Checks-Effects-Interactions pattern by modifying state only after
         * the transfer happened successfully, we also add the nonReentrant modifier to
         * the pbulic versions
         */
        if (_renegotiationFee > 0) {
            renegotiationAdminFee = LoanChecksAndCalculations.computeAdminFee(_renegotiationFee, loan.adminFeeInBasisPoints);
            // Transfer principal-plus-interest-minus-fees from the caller (always has to be borrower) to lender
            IERC20(loan.erc20Denomination).safeTransferFrom(borrower, lender, _renegotiationFee - renegotiationAdminFee);
            // Transfer fees from the caller (always has to be borrower) to admins
            IERC20(loan.erc20Denomination).safeTransferFrom(borrower, owner(), renegotiationAdminFee);
        }

        loan.duration = _newLoanDuration;
        loan.maximumRepaymentAmount = _newMaximumRepaymentAmount;

        emit LoanRenegotiated(_loanId, borrower, lender, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, renegotiationAdminFee);
    }

    /**
     * @dev Transfer collateral NFT from borrower to this contract and principal from lender to the borrower and
     * registers the new loan through the loan coordinator.
     *
     * @param _loanTerms - Struct containing the loan's settings
     * @param _lender - The address of the lender.
     * that there is no referrer.
     */
    function _createLoan(bytes32 _loanId, LoanTerms memory _loanTerms, address _borrower, address _lender) internal {
        // Transfer collateral from borrower to this contract to be held until
        // loan completion.
        _transferNFT(_loanTerms, _borrower, address(this));

        _createLoanNoNftTransfer(_loanId, _loanTerms, _borrower, _lender);
    }

    /**
     * @dev Transfer principal from lender to the borrower and
     * registers the new loan through the loan coordinator.
     *
     * @param _loanTerms - Struct containing the loan's settings
     * @param _lender - The address of the lender.
     * that there is no referrer.
     */
    function _createLoanNoNftTransfer(bytes32 _loanId, LoanTerms memory _loanTerms, address _borrower, address _lender) internal {
        _escrowTokens[_loanTerms.nftCollateralContract][_loanTerms.nftCollateralId] += 1;

        // Transfer principal from lender to borrower.
        if (_loanTerms.useLendingPool) {
            ILendingPool(_loanTerms.lender).informDisburse(_loanTerms.erc20Denomination, _borrower, _loanTerms.principalAmount);
        } else {
            IERC20(_loanTerms.erc20Denomination).safeTransferFrom(_lender, _borrower, _loanTerms.principalAmount);
        }

        // Add the loan to storage before moving collateral/principal to follow
        // the Checks-Effects-Interactions pattern.
        loanIdToLoan[_loanId] = _loanTerms;
    }

    /**
     * @dev Transfers several types of NFTs using a wrapper that knows how to handle each case.
     *
     * @param _loanTerms - Struct containing all the loan's parameters
     * @param _sender - Current owner of the NFT
     * @param _recipient - Recipient of the transfer
     */
    function _transferNFT(LoanTerms memory _loanTerms, address _sender, address _recipient) internal {
        IERC721(_loanTerms.nftCollateralContract).safeTransferFrom(_sender, _recipient, _loanTerms.nftCollateralId, "");
    }

    /**
     * @notice This function is called by a anyone to repay a loan. It can be called at any time after the loan has
     * begun and before loan expiry.. The caller will pay a pro-rata portion of their interest if the loan is paid off
     * early and the loan is pro-rated type, but the complete repayment amount if it is fixed type.
     * The the borrower (current owner of the obligation note) will get the collaterl NFT back.
     *
     * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause the
     * contract and hold hostage the NFT's that are still within it.
     *
     * @param _loanId  A unique identifier for this particular loan, sourced from the Loan Coordinator.
     *
     * emit {LoanRepaid} event
     */
    function _payBackLoan(bytes32 _loanId, address _borrower, address _lender, LoanTerms memory _loan) internal {
        (uint256 adminFee, uint256 payoffAmount) = _payoffAndFee(_loan);

        // Transfer principal-plus-interest-minus-fees from the caller to lender
        IERC20(_loan.erc20Denomination).safeTransferFrom(msg.sender, _lender, payoffAmount);
        if (_loan.useLendingPool) {
            ILendingPool(_lender).informPayBack(_loan.erc20Denomination, _loan.principalAmount);
        }

        // Transfer fees from the caller to admins
        IERC20(_loan.erc20Denomination).safeTransferFrom(msg.sender, owner(), adminFee);

        // Emit an event with all relevant details from this transaction.
        emit LoanRepaid(
            _loanId,
            _borrower,
            _lender,
            _loan.principalAmount,
            _loan.nftCollateralId,
            payoffAmount,
            adminFee,
            payoffAmount - _loan.principalAmount,
            _loan.nftCollateralContract,
            _loan.erc20Denomination
        );
    }

    /**
     * @notice A convenience function with shared functionality between `payBackLoan` and `liquidateOverdueLoan`.
     *
     * @param _loanId  A unique identifier for this particular loan, sourced from the Loan Coordinator.
     * @param _nftReceiver - The receiver of the collateral nft. The borrower when `payBackLoan` or the lender when
     * `liquidateOverdueLoan`.
     * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan.
     */
    function _resolveLoan(bytes32 _loanId, address _nftReceiver, LoanTerms memory _loanTerms) internal {
        _resolveLoanNoNftTransfer(_loanId, _loanTerms);
        // Transfer collateral from this contract to the lender, since the lender is seizing collateral for an overdue
        // loan

        _transferNFT(_loanTerms, address(this), _nftReceiver);
    }

    /**
     * @notice Resolving the loan without trasferring the nft to provide a base for the bundle
     * break up of the bundled loans
     *
     * @param _loanId  A unique identifier for this particular loan, sourced from the Loan Coordinator.
     * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan.
     */
    function _resolveLoanNoNftTransfer(bytes32 _loanId, LoanTerms memory _loanTerms) internal {
        // Mark loan as liquidated before doing any external transfers to follow the Checks-Effects-Interactions design
        // pattern
        loanRepaidOrLiquidated[_loanId] = true;

        _escrowTokens[_loanTerms.nftCollateralContract][_loanTerms.nftCollateralId] -= 1;
    }

    /**
     * @notice This function can be called by admins to change the permitted status of an ERC20 currency. This includes
     * both adding an ERC20 currency to the permitted list and removing it.
     *
     * @param _erc20 - The address of the ERC20 currency whose permit list status changed.
     * @param _permit - The new status of whether the currency is permitted or not.
     *
     * emit {ERC20Permit} event
     */
    function _setERC20Permit(address _erc20, bool _permit) internal {
        require(_erc20 != address(0), "erc20 is zero address");

        erc20Permits[_erc20] = _permit;

        emit ERC20Permit(_erc20, _permit);
    }

    /**
     * @dev Performs some validation checks over loan parameters
     *
     */
    function _loanSanityChecks(Offer memory _offer) internal view {
        require(getERC20Permit(_offer.erc20Denomination), "Currency denomination is not permitted");
        require(nftPermits[_offer.nftCollateralContract], "NFT collateral contract is not permitted");
        require(uint256(_offer.duration) <= maximumLoanDuration, "Loan duration exceeds maximum loan duration");
        require(uint256(_offer.duration) != 0, "Loan duration cannot be zero");
        require(_offer.adminFeeInBasisPoints == adminFeeInBasisPoints, "The admin fee has changed since this order was signed.");
    }

    /**
     * @dev reads some variable values of a loan for payback functions, created to reduce code repetition
     */
    function _getPartiesAndData(bytes32 _loanId) internal view returns (address borrower, address lender, LoanTerms memory loan) {
        // Fetch loan details from storage, but store them in memory for the sake of saving gas.
        loan = loanIdToLoan[_loanId];
        borrower = loan.borrower;
        lender = loan.lender;
    }

    /**
     * @dev Calculates the payoff amount and admin fee
     */
    function _payoffAndFee(LoanTerms memory _loanTerms) internal view virtual returns (uint256, uint256);

    /**
     * @dev Check valid loan ID
     */
    function isValidLoanId(bytes32 _loanId) public view returns (bool) {
        return loanIdToLoan[_loanId].borrower != address(0);
    }
}
          

File 43 of 59: contracts/loans/utils/NFTfiSigningUtilsContract.sol

// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

import {NFTfiSigningUtils, LoanData} from "./NFTfiSigningUtils.sol";

/**
 * @title  NFTfiSigningUtilsContract
 * @notice Helper contract for Loan. This contract manages externally verifying signatures from off-chain Loan orders.
 */
contract NFTfiSigningUtilsContract {
    /* ********* */
    /* FUNCTIONS */
    /* ********* */

    /**
     * @notice This function is when the borrower accepts a lender's offer, to validate the lender's signature that the
     * lender provided off-chain to verify that it did indeed made such offer.
     *
     * @param _offer - The offer struct containing:
     * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest
     * for this loan.
     * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of
     * the loan, measured in erc20Denomination's smallest units.
     * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their
     * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have
     * to pay this amount to retrieve their collateral, regardless of whether they repay early.
     * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral.
     * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this
     * loan. The NFT is stored within this contract during the duration of the loan.
     * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal
     * this there is no referrer.
     * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the
     * loan and seize the underlying collateral NFT.
     * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be
     * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an
     * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest
     * earned.
     * @param _signature - The signature structure containing:
     * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`.
     * - nonce: The nonce referred here is not the same as an Ethereum account's nonce.
     * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing
     * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     *   - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     *   - Second, it allows a user to cancel an off-chain order by calling
     * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from
     * using the user's off-chain order that contains that nonce.
     * - expiry: Date when the signature expires
     * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following
     * combination of parameters:
     *   - offer.erc20Denomination
     *   - offer.principalAmount
     *   - offer.maximumRepaymentAmount
     *   - offer.nftCollateralContract
     *   - offer.nftCollateralId
     *   - offer.duration
     *   - offer.adminFeeInBasisPoints
     *   - signature.signer,
     *   - signature.nonce,
     *   - signature.expiry,
     *   - loan contract address,
     *   - chainId
     * @param _loanContract - Address of the loan contract where the signature is going to be used
     */
    function isValidLenderSignature(
        LoanData.Offer memory _offer,
        LoanData.Signature memory _signature,
        address _loanContract
    ) external view returns (bool) {
        return NFTfiSigningUtils.isValidLenderSignature(_offer, _signature, _loanContract);
    }

    /**
     * @notice This function is called in renegotiateLoan() to validate the lender's signature that the lender provided
     * off-chain to verify that they did indeed want to agree to this loan renegotiation according to these terms.
     *
     * @param _loanId - The unique identifier for the loan to be renegotiated
     * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can
     * liquidate the loan and seize the underlying collateral NFT.
     * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to
     * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The
     * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay
     * early.
     * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation
     * @param _loan The current loan data
     * @param _signature - The signature structure containing:
     * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`.
     * - nonce: The nonce referred here is not the same as an Ethereum account's nonce.
     * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing
     * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun()
     * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains
     * that nonce.
     * - expiry - The date when the renegotiation offer expires
     * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the
     * following combination of parameters:
     * - _loanId
     * - _newLoanDuration
     * - _newMaximumRepaymentAmount
     * - _lender
     * - _lenderNonce
     * - _expiry
     *  - loan contract address,
     * - chainId
     * @param _loanContract - Address of the loan contract where the signature is going to be used
     */
    function isValidLenderRenegotiationSignature(
        bytes32 _loanId,
        uint32 _newLoanDuration,
        uint256 _newMaximumRepaymentAmount,
        uint256 _renegotiationFee,
        LoanData.LoanTerms memory _loan,
        LoanData.Signature memory _signature,
        address _loanContract
    ) external view returns (bool) {
        return
            NFTfiSigningUtils.isValidLenderRenegotiationSignature(
                _loanId,
                _newLoanDuration,
                _newMaximumRepaymentAmount,
                _renegotiationFee,
                _loan,
                _signature,
                _loanContract
            );
    }
}
          

File 44 of 59: @openzeppelin/contracts/utils/Pausable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}
          

File 45 of 59: @openzeppelin/contracts/token/ERC20/ERC20.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}
          

File 46 of 59: contracts/utils/TransferHelper.sol

// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.28;

library TransferHelper {
    error TransferNativeFailed();

    /// @notice Transfers Native token to the recipient address
    /// @dev Fails with error `TransferNativeFailed`
    /// @param to The destination of the transfer
    /// @param value The value to be transferred
    function safeTransferNative(address to, uint256 value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        if (!success) {
            revert TransferNativeFailed();
        }
    }
}
          

File 47 of 59: @openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/utils/ERC721Holder.sol)

pragma solidity ^0.8.20;

import {IERC721Receiver} from "../IERC721Receiver.sol";

/**
 * @dev Implementation of the {IERC721Receiver} interface.
 *
 * Accepts all token transfers.
 * Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or
 * {IERC721-setApprovalForAll}.
 */
abstract contract ERC721Holder is IERC721Receiver {
    /**
     * @dev See {IERC721Receiver-onERC721Received}.
     *
     * Always returns `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) {
        return this.onERC721Received.selector;
    }
}
          

File 48 of 59: @openzeppelin/contracts/utils/structs/EnumerableSet.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }
}
          

File 49 of 59: contracts/Marketplace/Marketplace.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol";
import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {TransferHelper} from "../utils/TransferHelper.sol";
import {Permission, Ownable} from "../utils/Permission.sol";
import {IMarketplace} from "./IMarketplace.sol";

contract Marketplace is IMarketplace, Permission, ReentrancyGuard, ERC721Holder {
    using SafeERC20 for IERC20;

    address public feeReceiver;
    uint256 public feePercent;
    uint256 public itemCount;

    // Permitted payments token for marketplace
    mapping(address => bool) public paymentToken;

    struct Item {
        uint256 itemId;
        address nft;
        uint256 tokenId;
        uint256 price;
        address paymentToken;
        address seller;
        address beneficiary;
        ItemStatus status;
    }

    // Market item info mapped by item id
    mapping(uint256 => Item) public items;

    event MakeItem(uint256 indexed itemId, Item item);
    event BoughtItem(uint256 indexed itemId, address indexed buyer);
    event ClosedItem(uint256 indexed itemId);
    event SetPaymentToken(address indexed token, bool allow);
    event SetFeeReceiver(address indexed oldValue, address indexed newValue);
    event SetFeePercent(uint256 indexed oldValue, uint256 indexed newValue);

    constructor(address _initialOwner, address _feeReceiver, uint256 _feePercent) Ownable(_initialOwner) {
        feeReceiver = _feeReceiver;
        feePercent = _feePercent;
    }

    function makeItem(address _nft, uint256 _tokenId, address _paymentToken, uint256 _price, address _beneficiary) external {
        if (_nft == address(0)) revert InvalidNft();
        if (!paymentToken[_paymentToken]) revert NotPermittedToken();
        if (_price == 0) revert InvalidPrice();
        if (_beneficiary == address(0)) revert InvalidBeneficiary();

        itemCount++;
        items[itemCount] = Item(itemCount, _nft, _tokenId, _price, _paymentToken, _msgSender(), _beneficiary, ItemStatus.OPENING);

        IERC721(_nft).transferFrom(_msgSender(), address(this), _tokenId);

        emit MakeItem(itemCount, items[itemCount]);
    }

    function purchaseItem(uint256 _itemId) external payable nonReentrant {
        Item storage item = items[_itemId];
        if (item.itemId == 0) revert NotExistedItem();
        if (item.status != ItemStatus.OPENING) revert NotOpeningItem();

        item.status = ItemStatus.SOLD;

        // transfer sold token to beneficiary address
        uint256 marketFee = (item.price * feePercent) / 10000;
        uint256 receivedAmount = item.price - marketFee;
        if (item.paymentToken == address(0)) {
            if (msg.value != item.price) revert NotEnougnETH();
            if (marketFee > 0) {
                TransferHelper.safeTransferNative(feeReceiver, marketFee);
            }
            TransferHelper.safeTransferNative(item.beneficiary, receivedAmount);
        } else {
            if (marketFee > 0) {
                IERC20(item.paymentToken).safeTransferFrom(_msgSender(), feeReceiver, marketFee);
            }
            IERC20(item.paymentToken).safeTransferFrom(_msgSender(), item.beneficiary, receivedAmount);
        }

        // transfer nft to buyer
        IERC721(item.nft).transferFrom(address(this), _msgSender(), item.tokenId);

        emit BoughtItem(item.itemId, _msgSender());
    }

    function closeItem(uint256 _itemId) external {
        Item storage item = items[_itemId];
        if (item.itemId == 0) revert NotExistedItem();
        if (item.status != ItemStatus.OPENING) revert NotOpeningItem();
        if (item.seller != _msgSender()) revert OnlyItemOwner();

        item.status = ItemStatus.CLOSED;

        // transfer nft to buyer
        IERC721(item.nft).transferFrom(address(this), _msgSender(), item.tokenId);

        emit ClosedItem(_itemId);
    }

    function setPaymentToken(address _token, bool allow) external onlyAdmin {
        paymentToken[_token] = allow;
        emit SetPaymentToken(_token, allow);
    }

    function setFeeReceiver(address _feeReceiver) external onlyAdmin {
        if (_feeReceiver == address(0)) revert InvalidFeeReceiver();

        address oldValue = feeReceiver;
        feeReceiver = _feeReceiver;
        emit SetFeeReceiver(oldValue, _feeReceiver);
    }

    function setFeePercent(uint256 _newValue) external onlyAdmin {
        if (_newValue > 10000) revert InvalidFeePercent();

        uint256 oldValue = feePercent;
        feePercent = _newValue;
        emit SetFeePercent(oldValue, _newValue);
    }
}
          

File 50 of 59: contracts/LendingPool/interfaces/ILendingPool.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/**
 *  @title  Lending Pool Interface
 *
 */
interface ILendingPool {
    function informDisburse(address _token, address _to, uint256 _amount) external;
    function informPayBack(address _token, uint256 _principal) external;
    function approveToPayRewards(address _token, uint256 _amount) external;
    function isAdmin(address _account) external view returns (bool);
    function owner() external view returns (address);
}
          

File 51 of 59: @openzeppelin/contracts/utils/Create2.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        assembly ("memory-safe") {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
            // if no address was created, and returndata is not empty, bubble revert
            if and(iszero(addr), not(iszero(returndatasize()))) {
                let p := mload(0x40)
                returndatacopy(p, 0, returndatasize())
                revert(p, returndatasize())
            }
        }
        if (addr == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}
          

File 52 of 59: @openzeppelin/contracts/utils/Errors.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}
          

File 53 of 59: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}
          

File 54 of 59: contracts/loans/direct/LoanChecksAndCalculations.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import {IDirectLoanBase} from "./IDirectLoanBase.sol";
import {LoanData} from "./LoanData.sol";

/**
 * @title  LoanChecksAndCalculations
 * @notice Helper library for LoanBase
 */
library LoanChecksAndCalculations {
    /* ******* */
    /* STORAGE */
    /* ******* */
    uint16 private constant HUNDRED_PERCENT = 10000;

    /* ********* */
    /* FUNCTIONS */
    /* ********* */

    /**
     * @notice Function that performs some validation checks before trying to repay a loan
     * @dev Everyone can call
     * @param _loanId - The id of the loan being repaid
     */
    function payBackChecks(bytes32 _loanId) external view {
        // Sanity check that payBackLoan() and liquidateOverdueLoan() have never been called on this loanId.
        // Depending on how the rest of the code turns out, this check may be unnecessary.
        checkLoanIdValidity(_loanId);

        // Fetch loan details from storage, but store them in memory for the sake of saving gas.
        (, , , , uint32 duration, , uint64 loanStartTime, , , , ) = IDirectLoanBase(address(this)).loanIdToLoan(
            _loanId
        );

        // When a loan exceeds the loan term, it is expired. At this stage the Lender can call Liquidate Loan to resolve
        // the loan.
        require(block.timestamp <= (uint256(loanStartTime) + uint256(duration)), "Loan is expired");
    }

    /**
     * @notice check loan's id is valid or not
     * @dev Everyone can call
     * @param _loanId Id of loan
     */
    function checkLoanIdValidity(bytes32 _loanId) public view {
        require(!IDirectLoanBase(address(this)).loanRepaidOrLiquidated(_loanId), "Loan already repaid/liquidated");
        require(IDirectLoanBase(address(this)).isValidLoanId(_loanId), "None existed loan ID");
    }

    /**
     * @dev Performs some validation checks before trying to renegotiate a loan.
     * Needed to avoid stack too deep.
     *
     * @param _loan - The main Loan Terms struct.
     * @param _loanId - The unique identifier for the loan to be renegotiated
     * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can
     * liquidate the loan and seize the underlying collateral NFT.
     * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to
     * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The
     * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay
     * early.
     * @param _lenderNonce - The nonce referred to here is not the same as an Ethereum account's nonce. We are
     * referring instead to nonces that are used by both the lender and the borrower when they are first signing
     * off-chain Loan orders. These nonces can be any uint256 value that the user has not previously used to sign an
     * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the
     * lender or the borrower in that situation. This serves two purposes:
     * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once.
     * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun()
     , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains
     * that nonce.
     * @return Borrower and Lender addresses
     */
    function renegotiationChecks(
        LoanData.LoanTerms memory _loan,
        bytes32 _loanId,
        uint32 _newLoanDuration,
        uint256 _newMaximumRepaymentAmount,
        uint256 _lenderNonce
    ) external view returns (address, address) {
        checkLoanIdValidity(_loanId);

        require(msg.sender == _loan.borrower, "Only borrower can initiate");
        require(block.timestamp <= (uint256(_loan.loanStartTime) + _newLoanDuration), "New duration already expired");
        require(
            uint256(_newLoanDuration) <= IDirectLoanBase(address(this)).maximumLoanDuration(),
            "New duration exceeds maximum loan duration"
        );
        require(_newMaximumRepaymentAmount >= _loan.principalAmount, "Negative interest rate loans are not allowed");

        require(
            !IDirectLoanBase(address(this)).getWhetherNonceHasBeenUsedForUser(_loan.lender, _lenderNonce),
            "Lender nonce invalid"
        );

        return (_loan.borrower, _loan.lender);
    }

    /**
     * @notice A convenience function computing the adminFee taken from a specified quantity of interest.
     *
     * @param _interestDue - The amount of interest due, measured in the smallest quantity of the ERC20 currency being
     * used to pay the interest.
     * @param _adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be taken
     * as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an
     * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest
     * earned.
     *
     * @return The quantity of ERC20 currency (measured in smalled units of that ERC20 currency) that is due as an admin
     * fee.
     */
    function computeAdminFee(uint256 _interestDue, uint256 _adminFeeInBasisPoints) external pure returns (uint256) {
        return (_interestDue * _adminFeeInBasisPoints) / HUNDRED_PERCENT;
    }
}
          

File 55 of 59: contracts/TokenBoundAccount/interfaces/ITokenBoundAccountRegistry.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface ITokenBoundAccountRegistry {
    event AccountCreated(
        address account,
        address implementation,
        uint256 chainId,
        address tokenContract,
        uint256 tokenId,
        uint256 salt
    );

    function createAccount(
        address implementation,
        uint256 chainId,
        address tokenContract,
        uint256 tokenId,
        uint256 seed
    ) external returns (address);

    function account(
        address implementation,
        uint256 chainId,
        address tokenContract,
        uint256 tokenId,
        uint256 salt
    ) external view returns (address);
}
          

File 56 of 59: @openzeppelin/contracts/interfaces/IERC1271.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}
          

File 57 of 59: @openzeppelin/contracts/access/Ownable.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}
          

File 58 of 59: contracts/loans/direct/IDirectLoanBase.sol

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface IDirectLoanBase {
    function maximumLoanDuration() external view returns (uint256);

    function adminFeeInBasisPoints() external view returns (uint16);

    function loanIdToLoan(
        bytes32
    )
        external
        view
        returns (
            uint256,
            uint256,
            uint256,
            address,
            uint32,
            uint16,
            uint64,
            address,
            address,
            address,
            bool
        );

    function loanRepaidOrLiquidated(bytes32) external view returns (bool);

    function getWhetherNonceHasBeenUsedForUser(address _user, uint256 _nonce) external view returns (bool);

    function isValidLoanId(bytes32 _loanId) external view returns (bool);
}
          

File 59 of 59: @openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}
          

コンパイラ設定

{"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":true},"libraries":{},"evmVersion":"paris"}
              

契約ABI

[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"string","name":"_baseURI","internalType":"string"}]},{"type":"error","name":"ERC721IncorrectOwner","inputs":[{"type":"address","name":"sender","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"},{"type":"address","name":"owner","internalType":"address"}]},{"type":"error","name":"ERC721InsufficientApproval","inputs":[{"type":"address","name":"operator","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"error","name":"ERC721InvalidApprover","inputs":[{"type":"address","name":"approver","internalType":"address"}]},{"type":"error","name":"ERC721InvalidOperator","inputs":[{"type":"address","name":"operator","internalType":"address"}]},{"type":"error","name":"ERC721InvalidOwner","inputs":[{"type":"address","name":"owner","internalType":"address"}]},{"type":"error","name":"ERC721InvalidReceiver","inputs":[{"type":"address","name":"receiver","internalType":"address"}]},{"type":"error","name":"ERC721InvalidSender","inputs":[{"type":"address","name":"sender","internalType":"address"}]},{"type":"error","name":"ERC721NonexistentToken","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"event","name":"Approval","inputs":[{"type":"address","name":"owner","internalType":"address","indexed":true},{"type":"address","name":"approved","internalType":"address","indexed":true},{"type":"uint256","name":"tokenId","internalType":"uint256","indexed":true}],"anonymous":false},{"type":"event","name":"ApprovalForAll","inputs":[{"type":"address","name":"owner","internalType":"address","indexed":true},{"type":"address","name":"operator","internalType":"address","indexed":true},{"type":"bool","name":"approved","internalType":"bool","indexed":false}],"anonymous":false},{"type":"event","name":"BatchMetadataUpdate","inputs":[{"type":"uint256","name":"_fromTokenId","internalType":"uint256","indexed":false},{"type":"uint256","name":"_toTokenId","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"MetadataUpdate","inputs":[{"type":"uint256","name":"_tokenId","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"Transfer","inputs":[{"type":"address","name":"from","internalType":"address","indexed":true},{"type":"address","name":"to","internalType":"address","indexed":true},{"type":"uint256","name":"tokenId","internalType":"uint256","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"approve","inputs":[{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"balanceOf","inputs":[{"type":"address","name":"owner","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"baseExtension","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"baseURI","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"getApproved","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"isApprovedForAll","inputs":[{"type":"address","name":"owner","internalType":"address"},{"type":"address","name":"operator","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"mint","inputs":[{"type":"address","name":"_to","internalType":"address"},{"type":"uint256","name":"_amount","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"name","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"ownerOf","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"safeTransferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"safeTransferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setApprovalForAll","inputs":[{"type":"address","name":"operator","internalType":"address"},{"type":"bool","name":"approved","internalType":"bool"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"supportsInterface","inputs":[{"type":"bytes4","name":"interfaceId","internalType":"bytes4"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"symbol","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"tokenIds","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"tokenURI","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]}]
              

契約作成コード

検証と公開
0x60a060405260006080908152600890610018908261015b565b5034801561002557600080fd5b5060405161149038038061149083398101604081905261004491610219565b6040518060400160405280600d81526020016c43686f6e6b20536f636965747960981b8152506040518060400160405280600581526020016443484f4e4b60d81b8152508160009081610097919061015b565b5060016100a4828261015b565b50600891506100b59050828261015b565b50506102e5565b634e487b7160e01b600052604160045260246000fd5b600181811c908216806100e657607f821691505b60208210810361010657634e487b7160e01b600052602260045260246000fd5b50919050565b601f82111561015657806000526020600020601f840160051c810160208510156101335750805b601f840160051c820191505b81811015610153576000815560010161013f565b50505b505050565b81516001600160401b03811115610174576101746100bc565b6101888161018284546100d2565b8461010c565b6020601f8211600181146101bc57600083156101a45750848201515b600019600385901b1c1916600184901b178455610153565b600084815260208120601f198516915b828110156101ec57878501518255602094850194600190920191016101cc565b508482101561020a5786840151600019600387901b60f8161c191681555b50505050600190811b01905550565b60006020828403121561022b57600080fd5b81516001600160401b0381111561024157600080fd5b8201601f8101841361025257600080fd5b80516001600160401b0381111561026b5761026b6100bc565b604051601f8201601f19908116603f011681016001600160401b0381118282101715610299576102996100bc565b6040528181528282016020018610156102b157600080fd5b60005b828110156102d0576020818501810151838301820152016102b4565b50600091810160200191909152949350505050565b61119c806102f46000396000f3fe608060405234801561001057600080fd5b506004361061010b5760003560e01c80636c0360eb116100a2578063a22cb46511610071578063a22cb46514610213578063b88d4fde14610226578063c668286214610239578063c87b56dd1461025d578063e985e9c51461027057600080fd5b80636c0360eb146101d957806370a08231146101e1578063714cff561461020257806395d89b411461020b57600080fd5b806323b872dd116100de57806323b872dd1461018d57806340c10f19146101a057806342842e0e146101b35780636352211e146101c657600080fd5b806301ffc9a71461011057806306fdde0314610138578063081812fc1461014d578063095ea7b314610178575b600080fd5b61012361011e366004610d3e565b610283565b60405190151581526020015b60405180910390f35b6101406102ae565b60405161012f9190610db2565b61016061015b366004610dc5565b610340565b6040516001600160a01b03909116815260200161012f565b61018b610186366004610dfa565b610369565b005b61018b61019b366004610e24565b610378565b61018b6101ae366004610dfa565b610408565b61018b6101c1366004610e24565b610441565b6101606101d4366004610dc5565b61045c565b610140610467565b6101f46101ef366004610e61565b6104f5565b60405190815260200161012f565b6101f460075481565b61014061053d565b61018b610221366004610e7c565b61054c565b61018b610234366004610ece565b610557565b61014060405180604001604052806005815260200164173539b7b760d91b81525081565b61014061026b366004610dc5565b61056f565b61012361027e366004610fb2565b6105cc565b60006001600160e01b03198216632483248360e11b14806102a857506102a8826105fa565b92915050565b6060600080546102bd90610fe5565b80601f01602080910402602001604051908101604052809291908181526020018280546102e990610fe5565b80156103365780601f1061030b57610100808354040283529160200191610336565b820191906000526020600020905b81548152906001019060200180831161031957829003601f168201915b5050505050905090565b600061034b8261064a565b506000828152600460205260409020546001600160a01b03166102a8565b610374828233610683565b5050565b6001600160a01b0382166103a757604051633250574960e11b8152600060048201526024015b60405180910390fd5b60006103b4838333610690565b9050836001600160a01b0316816001600160a01b031614610402576040516364283d7b60e01b81526001600160a01b038086166004830152602482018490528216604482015260640161039e565b50505050565b60005b8181101561043c57600780549060006104238361101f565b919050555061043483600754610789565b60010161040b565b505050565b61043c83838360405180602001604052806000815250610557565b60006102a88261064a565b6008805461047490610fe5565b80601f01602080910402602001604051908101604052809291908181526020018280546104a090610fe5565b80156104ed5780601f106104c2576101008083540402835291602001916104ed565b820191906000526020600020905b8154815290600101906020018083116104d057829003601f168201915b505050505081565b60006001600160a01b038216610521576040516322718ad960e21b81526000600482015260240161039e565b506001600160a01b031660009081526003602052604090205490565b6060600180546102bd90610fe5565b6103743383836107a3565b610562848484610378565b6104023385858585610842565b606061057a8261064a565b5060086105868361096d565b60405180604001604052806005815260200164173539b7b760d91b8152506040516020016105b693929190611062565b6040516020818303038152906040529050919050565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b60006001600160e01b031982166380ac58cd60e01b148061062b57506001600160e01b03198216635b5e139f60e01b145b806102a857506301ffc9a760e01b6001600160e01b03198316146102a8565b6000818152600260205260408120546001600160a01b0316806102a857604051637e27328960e01b81526004810184905260240161039e565b61043c8383836001610a00565b6000828152600260205260408120546001600160a01b03908116908316156106bd576106bd818486610b06565b6001600160a01b038116156106fb576106da600085600080610a00565b6001600160a01b038116600090815260036020526040902080546000190190555b6001600160a01b0385161561072a576001600160a01b0385166000908152600360205260409020805460010190555b60008481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b610374828260405180602001604052806000815250610b6a565b6001600160a01b0382166107d557604051630b61174360e31b81526001600160a01b038316600482015260240161039e565b6001600160a01b03838116600081815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6001600160a01b0383163b1561096657604051630a85bd0160e11b81526001600160a01b0384169063150b7a0290610884908890889087908790600401611116565b6020604051808303816000875af19250505080156108bf575060408051601f3d908101601f191682019092526108bc91810190611149565b60015b610928573d8080156108ed576040519150601f19603f3d011682016040523d82523d6000602084013e6108f2565b606091505b50805160000361092057604051633250574960e11b81526001600160a01b038516600482015260240161039e565b805181602001fd5b6001600160e01b03198116630a85bd0160e11b1461096457604051633250574960e11b81526001600160a01b038516600482015260240161039e565b505b5050505050565b6060600061097a83610b82565b600101905060008167ffffffffffffffff81111561099a5761099a610eb8565b6040519080825280601f01601f1916602001820160405280156109c4576020820181803683370190505b5090508181016020015b600019016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846109ce57509392505050565b8080610a1457506001600160a01b03821615155b15610ad6576000610a248461064a565b90506001600160a01b03831615801590610a505750826001600160a01b0316816001600160a01b031614155b8015610a635750610a6181846105cc565b155b15610a8c5760405163a9fbf51f60e01b81526001600160a01b038416600482015260240161039e565b8115610ad45783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b5050600090815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b610b11838383610c5a565b61043c576001600160a01b038316610b3f57604051637e27328960e01b81526004810182905260240161039e565b60405163177e802f60e01b81526001600160a01b03831660048201526024810182905260440161039e565b610b748383610cc0565b61043c336000858585610842565b60008072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310610bc15772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310610bed576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310610c0b57662386f26fc10000830492506010015b6305f5e1008310610c23576305f5e100830492506008015b6127108310610c3757612710830492506004015b60648310610c49576064830492506002015b600a83106102a85760010192915050565b60006001600160a01b03831615801590610cb85750826001600160a01b0316846001600160a01b03161480610c945750610c9484846105cc565b80610cb857506000828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b038216610cea57604051633250574960e11b81526000600482015260240161039e565b6000610cf883836000610690565b90506001600160a01b0381161561043c576040516339e3563760e11b81526000600482015260240161039e565b6001600160e01b031981168114610d3b57600080fd5b50565b600060208284031215610d5057600080fd5b8135610d5b81610d25565b9392505050565b60005b83811015610d7d578181015183820152602001610d65565b50506000910152565b60008151808452610d9e816020860160208601610d62565b601f01601f19169290920160200192915050565b602081526000610d5b6020830184610d86565b600060208284031215610dd757600080fd5b5035919050565b80356001600160a01b0381168114610df557600080fd5b919050565b60008060408385031215610e0d57600080fd5b610e1683610dde565b946020939093013593505050565b600080600060608486031215610e3957600080fd5b610e4284610dde565b9250610e5060208501610dde565b929592945050506040919091013590565b600060208284031215610e7357600080fd5b610d5b82610dde565b60008060408385031215610e8f57600080fd5b610e9883610dde565b915060208301358015158114610ead57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b60008060008060808587031215610ee457600080fd5b610eed85610dde565b9350610efb60208601610dde565b925060408501359150606085013567ffffffffffffffff811115610f1e57600080fd5b8501601f81018713610f2f57600080fd5b803567ffffffffffffffff811115610f4957610f49610eb8565b604051601f8201601f19908116603f0116810167ffffffffffffffff81118282101715610f7857610f78610eb8565b604052818152828201602001891015610f9057600080fd5b8160208401602083013760006020838301015280935050505092959194509250565b60008060408385031215610fc557600080fd5b610fce83610dde565b9150610fdc60208401610dde565b90509250929050565b600181811c90821680610ff957607f821691505b60208210810361101957634e487b7160e01b600052602260045260246000fd5b50919050565b60006001820161103f57634e487b7160e01b600052601160045260246000fd5b5060010190565b60008151611058818560208601610d62565b9290920192915050565b6000808554818160011c9050600182168061107e57607f821691505b60208210810361109c57634e487b7160e01b84526022600452602484fd5b8080156110b057600181146110c5576110f5565b60ff19841687528215158302870194506110f5565b60008a81526020902060005b848110156110ed578154898201526001909101906020016110d1565b505082870194505b5050505061110c6111068287611046565b85611046565b9695505050505050565b6001600160a01b038581168252841660208201526040810183905260806060820181905260009061110c90830184610d86565b60006020828403121561115b57600080fd5b8151610d5b81610d2556fea2646970667358221220f9584514a0621ee813b83ccec2ad2f4fefb2c1b0fc9e90144dfd46c40b1cb25664736f6c634300081c0033000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000087465737420757269000000000000000000000000000000000000000000000000

展開されたbytecode

0x608060405234801561001057600080fd5b506004361061010b5760003560e01c80636c0360eb116100a2578063a22cb46511610071578063a22cb46514610213578063b88d4fde14610226578063c668286214610239578063c87b56dd1461025d578063e985e9c51461027057600080fd5b80636c0360eb146101d957806370a08231146101e1578063714cff561461020257806395d89b411461020b57600080fd5b806323b872dd116100de57806323b872dd1461018d57806340c10f19146101a057806342842e0e146101b35780636352211e146101c657600080fd5b806301ffc9a71461011057806306fdde0314610138578063081812fc1461014d578063095ea7b314610178575b600080fd5b61012361011e366004610d3e565b610283565b60405190151581526020015b60405180910390f35b6101406102ae565b60405161012f9190610db2565b61016061015b366004610dc5565b610340565b6040516001600160a01b03909116815260200161012f565b61018b610186366004610dfa565b610369565b005b61018b61019b366004610e24565b610378565b61018b6101ae366004610dfa565b610408565b61018b6101c1366004610e24565b610441565b6101606101d4366004610dc5565b61045c565b610140610467565b6101f46101ef366004610e61565b6104f5565b60405190815260200161012f565b6101f460075481565b61014061053d565b61018b610221366004610e7c565b61054c565b61018b610234366004610ece565b610557565b61014060405180604001604052806005815260200164173539b7b760d91b81525081565b61014061026b366004610dc5565b61056f565b61012361027e366004610fb2565b6105cc565b60006001600160e01b03198216632483248360e11b14806102a857506102a8826105fa565b92915050565b6060600080546102bd90610fe5565b80601f01602080910402602001604051908101604052809291908181526020018280546102e990610fe5565b80156103365780601f1061030b57610100808354040283529160200191610336565b820191906000526020600020905b81548152906001019060200180831161031957829003601f168201915b5050505050905090565b600061034b8261064a565b506000828152600460205260409020546001600160a01b03166102a8565b610374828233610683565b5050565b6001600160a01b0382166103a757604051633250574960e11b8152600060048201526024015b60405180910390fd5b60006103b4838333610690565b9050836001600160a01b0316816001600160a01b031614610402576040516364283d7b60e01b81526001600160a01b038086166004830152602482018490528216604482015260640161039e565b50505050565b60005b8181101561043c57600780549060006104238361101f565b919050555061043483600754610789565b60010161040b565b505050565b61043c83838360405180602001604052806000815250610557565b60006102a88261064a565b6008805461047490610fe5565b80601f01602080910402602001604051908101604052809291908181526020018280546104a090610fe5565b80156104ed5780601f106104c2576101008083540402835291602001916104ed565b820191906000526020600020905b8154815290600101906020018083116104d057829003601f168201915b505050505081565b60006001600160a01b038216610521576040516322718ad960e21b81526000600482015260240161039e565b506001600160a01b031660009081526003602052604090205490565b6060600180546102bd90610fe5565b6103743383836107a3565b610562848484610378565b6104023385858585610842565b606061057a8261064a565b5060086105868361096d565b60405180604001604052806005815260200164173539b7b760d91b8152506040516020016105b693929190611062565b6040516020818303038152906040529050919050565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b60006001600160e01b031982166380ac58cd60e01b148061062b57506001600160e01b03198216635b5e139f60e01b145b806102a857506301ffc9a760e01b6001600160e01b03198316146102a8565b6000818152600260205260408120546001600160a01b0316806102a857604051637e27328960e01b81526004810184905260240161039e565b61043c8383836001610a00565b6000828152600260205260408120546001600160a01b03908116908316156106bd576106bd818486610b06565b6001600160a01b038116156106fb576106da600085600080610a00565b6001600160a01b038116600090815260036020526040902080546000190190555b6001600160a01b0385161561072a576001600160a01b0385166000908152600360205260409020805460010190555b60008481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b610374828260405180602001604052806000815250610b6a565b6001600160a01b0382166107d557604051630b61174360e31b81526001600160a01b038316600482015260240161039e565b6001600160a01b03838116600081815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6001600160a01b0383163b1561096657604051630a85bd0160e11b81526001600160a01b0384169063150b7a0290610884908890889087908790600401611116565b6020604051808303816000875af19250505080156108bf575060408051601f3d908101601f191682019092526108bc91810190611149565b60015b610928573d8080156108ed576040519150601f19603f3d011682016040523d82523d6000602084013e6108f2565b606091505b50805160000361092057604051633250574960e11b81526001600160a01b038516600482015260240161039e565b805181602001fd5b6001600160e01b03198116630a85bd0160e11b1461096457604051633250574960e11b81526001600160a01b038516600482015260240161039e565b505b5050505050565b6060600061097a83610b82565b600101905060008167ffffffffffffffff81111561099a5761099a610eb8565b6040519080825280601f01601f1916602001820160405280156109c4576020820181803683370190505b5090508181016020015b600019016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846109ce57509392505050565b8080610a1457506001600160a01b03821615155b15610ad6576000610a248461064a565b90506001600160a01b03831615801590610a505750826001600160a01b0316816001600160a01b031614155b8015610a635750610a6181846105cc565b155b15610a8c5760405163a9fbf51f60e01b81526001600160a01b038416600482015260240161039e565b8115610ad45783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b5050600090815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b610b11838383610c5a565b61043c576001600160a01b038316610b3f57604051637e27328960e01b81526004810182905260240161039e565b60405163177e802f60e01b81526001600160a01b03831660048201526024810182905260440161039e565b610b748383610cc0565b61043c336000858585610842565b60008072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310610bc15772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310610bed576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310610c0b57662386f26fc10000830492506010015b6305f5e1008310610c23576305f5e100830492506008015b6127108310610c3757612710830492506004015b60648310610c49576064830492506002015b600a83106102a85760010192915050565b60006001600160a01b03831615801590610cb85750826001600160a01b0316846001600160a01b03161480610c945750610c9484846105cc565b80610cb857506000828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b038216610cea57604051633250574960e11b81526000600482015260240161039e565b6000610cf883836000610690565b90506001600160a01b0381161561043c576040516339e3563760e11b81526000600482015260240161039e565b6001600160e01b031981168114610d3b57600080fd5b50565b600060208284031215610d5057600080fd5b8135610d5b81610d25565b9392505050565b60005b83811015610d7d578181015183820152602001610d65565b50506000910152565b60008151808452610d9e816020860160208601610d62565b601f01601f19169290920160200192915050565b602081526000610d5b6020830184610d86565b600060208284031215610dd757600080fd5b5035919050565b80356001600160a01b0381168114610df557600080fd5b919050565b60008060408385031215610e0d57600080fd5b610e1683610dde565b946020939093013593505050565b600080600060608486031215610e3957600080fd5b610e4284610dde565b9250610e5060208501610dde565b929592945050506040919091013590565b600060208284031215610e7357600080fd5b610d5b82610dde565b60008060408385031215610e8f57600080fd5b610e9883610dde565b915060208301358015158114610ead57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b60008060008060808587031215610ee457600080fd5b610eed85610dde565b9350610efb60208601610dde565b925060408501359150606085013567ffffffffffffffff811115610f1e57600080fd5b8501601f81018713610f2f57600080fd5b803567ffffffffffffffff811115610f4957610f49610eb8565b604051601f8201601f19908116603f0116810167ffffffffffffffff81118282101715610f7857610f78610eb8565b604052818152828201602001891015610f9057600080fd5b8160208401602083013760006020838301015280935050505092959194509250565b60008060408385031215610fc557600080fd5b610fce83610dde565b9150610fdc60208401610dde565b90509250929050565b600181811c90821680610ff957607f821691505b60208210810361101957634e487b7160e01b600052602260045260246000fd5b50919050565b60006001820161103f57634e487b7160e01b600052601160045260246000fd5b5060010190565b60008151611058818560208601610d62565b9290920192915050565b6000808554818160011c9050600182168061107e57607f821691505b60208210810361109c57634e487b7160e01b84526022600452602484fd5b8080156110b057600181146110c5576110f5565b60ff19841687528215158302870194506110f5565b60008a81526020902060005b848110156110ed578154898201526001909101906020016110d1565b505082870194505b5050505061110c6111068287611046565b85611046565b9695505050505050565b6001600160a01b038581168252841660208201526040810183905260806060820181905260009061110c90830184610d86565b60006020828403121561115b57600080fd5b8151610d5b81610d2556fea2646970667358221220f9584514a0621ee813b83ccec2ad2f4fefb2c1b0fc9e90144dfd46c40b1cb25664736f6c634300081c0033