代币
Chonk Society (CHONK)
警告!合约字节码已更改,与已验证的字节码不符。因此,与此智能合约的交互可能存在风险。
本合同已通过 Sourcify 进行部分验证。
- 合同名称:
- ChonkSociety
- 已启用优化:
- 真
- 编译器版本:
- v0.8.28+commit.7893614a
- 优化运行:
- 200
- EVM 版本:
- paris
- 已验证:
- 2025-03-10T06:44:40.907151Z
构造函数参数
0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000087465737420757269000000000000000000000000000000000000000000000000
Arg [0] (string) : test uri
文件 1 的 59: contracts/ChonkSociety.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import "@openzeppelin/contracts/utils/Strings.sol"; import "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; contract ChonkSociety is ERC721URIStorage { using Strings for uint256; using EnumerableSet for EnumerableSet.UintSet; /* ******* */ /* STORAGE */ /* ******* */ /** * @notice base extension for metadata URI */ string public constant baseExtension = ".json"; /** * @notice Token Id */ uint256 public tokenIds; /** * @notice base URI for metadata */ string public baseURI = ""; /* *********** */ /* CONSTRUCTOR */ /* *********** */ /** * @notice null Constructor * @param _baseURI Base URI of NFT */ constructor(string memory _baseURI) ERC721("Chonk Society", "CHONK") { baseURI = _baseURI; } /* ****************** */ /* EXTERNAL FUNCTIONS */ /* ****************** */ /** * @notice Mint new NFT * @dev Everyone can call * @param _to Address will be received NFT * @param _amount Amount NFT that address will be received */ function mint(address _to, uint256 _amount) external { for (uint256 i = 0; i < _amount; i++) { tokenIds++; _safeMint(_to, tokenIds); } } /* ************* */ /* VIEW FUNCTIONS */ /* ************* */ /** * @notice Get token URI of a NFT * @dev Everyone can call * @param tokenId Id of NFT */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { _requireOwned(tokenId); return string(abi.encodePacked(baseURI, tokenId.toString(), baseExtension)); } }
File 2 of 59: @openzeppelin/contracts/utils/Strings.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
File 3 of 59: contracts/loans/BaseLoan.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; /** * @title BaseLoan * @dev Implements base functionalities common to all Loan types. * Mostly related to governance and security. */ abstract contract BaseLoan is Ownable, Pausable, ReentrancyGuard { /* *********** */ /* CONSTRUCTOR */ /* *********** */ /** * @notice Sets the admin of the contract. * * @param _admin - Initial admin of this contract. */ constructor(address _admin) Ownable(_admin) { // solhint-disable-previous-line no-empty-blocks } /* ****************** */ /* EXTERNAL FUNCTIONS */ /* ****************** */ /** * @notice Triggers stopped state. * * @dev Only the owner can call this method. * The contract must not be paused. */ function pause() external onlyOwner { _pause(); } /** * @notice Returns to normal state. * * @dev Only the owner can call this method. * The contract must be paused. */ function unpause() external onlyOwner { _unpause(); } }
File 4 of 59: @openzeppelin/contracts/utils/Context.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
File 5 of 59: @openzeppelin/contracts/utils/cryptography/SignatureChecker.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.20; import {ECDSA} from "./ECDSA.sol"; import {IERC1271} from "../../interfaces/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC-1271 signatures from smart contract wallets like * Argent and Safe Wallet (previously Gnosis Safe). */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC-1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { if (signer.code.length == 0) { (address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(hash, signature); return err == ECDSA.RecoverError.NoError && recovered == signer; } else { return isValidERC1271SignatureNow(signer, hash, signature); } } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC-1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeCall(IERC1271.isValidSignature, (hash, signature)) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } }
File 6 of 59: @openzeppelin/contracts/interfaces/IERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
File 7 of 59: @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
File 8 of 59: contracts/TokenBoundAccount/TokenBoundAccountRegistry.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Create2} from "@openzeppelin/contracts/utils/Create2.sol"; import {ITokenBoundAccountRegistry} from "./interfaces/ITokenBoundAccountRegistry.sol"; import {TokenBoundAccountBytecodeLib} from "./libraries/TokenBoundAccountBytecodeLib.sol"; contract TokenBoundAccountRegistry is ITokenBoundAccountRegistry { error InitializationFailed(); function createAccount( address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 salt ) external returns (address) { bytes memory code = TokenBoundAccountBytecodeLib.getCreationCode( implementation, chainId, tokenContract, tokenId, salt ); address _account = Create2.computeAddress(bytes32(salt), keccak256(code)); if (_account.code.length != 0) return _account; emit AccountCreated(_account, implementation, chainId, tokenContract, tokenId, salt); _account = Create2.deploy(0, bytes32(salt), code); return _account; } function account( address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 salt ) external view returns (address) { bytes32 bytecodeHash = keccak256( TokenBoundAccountBytecodeLib.getCreationCode(implementation, chainId, tokenContract, tokenId, salt) ); return Create2.computeAddress(bytes32(salt), bytecodeHash); } }
File 9 of 59: contracts/LendingPool/interfaces/ILendingStake.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /** * @title Lending Stake Interface * */ interface ILendingStake { function approve(uint256 _amount) external; function wXENE() external view returns (address); }
File 10 of 59: contracts/LendingPool/LendingStake.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Pausable, Context} from "@openzeppelin/contracts/utils/Pausable.sol"; import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {ILendingPool} from "./interfaces/ILendingPool.sol"; contract LendingStake is Context, Pausable, ReentrancyGuard { using Math for uint256; using SafeERC20 for IERC20; using EnumerableSet for EnumerableSet.AddressSet; // A big number to perform mul and div operations uint256 private constant REWARDS_PRECISION = 1e12; // Infomation of each user. struct UserInfo { uint256 amount; // How many wXENE tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. uint256 rewardPending; // // We do some fancy math here. Basically, any point in time, the amount of wXENE // entitled to a user but is pending to be distributed is: // // pending reward = (user.amount * pool.accRewardPerShare) - user.rewardDebt + user.rewardPending // // Whenever a user deposits or withdraws wXENE tokens to a pool. Here's what happens: // 1. The pool's `accRewardPerShare` (and `lastRewardBlock`) gets updated. // 2. User receives the pending reward sent to his/her address. // 3. User's `amount` gets updated. // 4. User's `rewardDebt` gets updated. } // Staking Pool information struct PoolInfo { uint256 lastRewardBlock; // Last block number that Rewards distribution occurs. uint256 accRewardPerShare; // Accumulated reward per share, times 1e12. See below. uint256 stakedSupply; uint256 totalPendingReward; } PoolInfo public poolInfo; // The stake token IERC20 public immutable wXENE; // The lending pool contract address address public lendingPool; // The block number when mining starts uint256 public startBlock; // Rewards created per block. uint256 public rewardPerBlock; // Infomation of each staker mapping(address => UserInfo) public userInfo; // Addresses list of all stakers EnumerableSet.AddressSet private addressList; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event ClaimReward(address indexed user, uint256 amount); error OwnableUnauthorizedAccount(address account); error OnlyLendingPool(address account); error RewardBalanceTooSmall(); error AmountTooSmall(); error AmountTooBig(); error InvalidAddress(); error UserAlreadyStaked(); modifier onlyOwner() { if (ILendingPool(lendingPool).owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } _; } constructor(IERC20 _wXENE, address _lendingPool, uint256 _rewardPerBlock, uint256 _startBlock) { wXENE = _wXENE; lendingPool = _lendingPool; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; // Initial staking pool information poolInfo = PoolInfo({lastRewardBlock: _startBlock, accRewardPerShare: 0, stakedSupply: 0, totalPendingReward: 0}); } /** * @dev Get number of staker */ function addressLength() external view returns (uint256) { return addressList.length(); } /** * @dev Get a staked address by index */ function getAddressByIndex(uint256 _index) external view returns (address) { return addressList.at(_index); } /** * @dev Get all staked addresses */ function getAllAddress() external view returns (address[] memory) { return addressList.values(); } /** * @dev Get current pending rewards of given user */ function pendingReward(address _user) external view returns (uint256) { uint256 accRewardPerShare = poolInfo.accRewardPerShare; uint256 stakedSupply = poolInfo.stakedSupply; if (block.number > poolInfo.lastRewardBlock && stakedSupply != 0) { uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number); uint256 tokenReward = multiplier * rewardPerBlock; accRewardPerShare = accRewardPerShare + tokenReward.mulDiv(REWARDS_PRECISION, stakedSupply); } UserInfo memory user = userInfo[_user]; return user.amount.mulDiv(accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending; } /** * @dev Get current reward supply */ function rewardSupply() external view returns (uint256) { if (block.number > poolInfo.lastRewardBlock && poolInfo.stakedSupply != 0) { uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number); return poolInfo.totalPendingReward + (multiplier * rewardPerBlock); } return poolInfo.totalPendingReward; } /** * @dev called by anyone to update reward variables of the given pool to be up-to-date */ function updatePool() public { if (block.number <= poolInfo.lastRewardBlock) { return; } uint256 wXENESupply = poolInfo.stakedSupply; if (wXENESupply == 0) { poolInfo.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number); uint256 tokenReward = multiplier * rewardPerBlock; poolInfo.totalPendingReward = poolInfo.totalPendingReward + tokenReward; poolInfo.accRewardPerShare = poolInfo.accRewardPerShare + tokenReward.mulDiv(REWARDS_PRECISION, wXENESupply); poolInfo.lastRewardBlock = block.number; } /** * @dev called by users to deposit wXENE tokens */ function deposit(uint256 _amount) external whenNotPaused { if (_amount == 0) revert AmountTooSmall(); updatePool(); wXENE.safeTransferFrom(_msgSender(), address(this), _amount); UserInfo storage user = userInfo[_msgSender()]; if (user.amount == 0 && user.rewardPending == 0 && user.rewardDebt == 0) { addressList.add(_msgSender()); } user.rewardPending = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending; user.amount = user.amount + _amount; user.rewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION); poolInfo.stakedSupply = poolInfo.stakedSupply + _amount; emit Deposit(_msgSender(), _amount); } /** * @dev called by staked users to withdraw staked wXENE tokens */ function withdraw(uint256 _amount) external nonReentrant whenNotPaused { if (_amount == 0) revert AmountTooSmall(); UserInfo storage user = userInfo[_msgSender()]; if (user.amount < _amount) revert AmountTooBig(); updatePool(); user.rewardPending = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending; user.amount = user.amount - _amount; user.rewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION); poolInfo.stakedSupply = poolInfo.stakedSupply - _amount; if (user.amount == 0) { addressList.remove(_msgSender()); } wXENE.safeTransfer(_msgSender(), _amount); emit Withdraw(_msgSender(), _amount); } /** * @dev called by staked users to claim rewards from lending pool */ function claimReward() external nonReentrant whenNotPaused { UserInfo storage user = userInfo[_msgSender()]; updatePool(); uint256 _currentRewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION); uint256 _amount = _currentRewardDebt - user.rewardDebt + user.rewardPending; if (_amount > wXENE.balanceOf(lendingPool)) { revert RewardBalanceTooSmall(); } user.rewardPending = 0; user.rewardDebt = _currentRewardDebt; poolInfo.totalPendingReward -= _amount; ILendingPool(lendingPool).approveToPayRewards(address(wXENE), _amount); wXENE.safeTransferFrom(lendingPool, _msgSender(), _amount); emit ClaimReward(_msgSender(), _amount); } /** * @dev Get the multiplier between two blocks */ function getMultiplier(uint256 _from, uint256 _to) private pure returns (uint256) { unchecked { return _to - _from; } } /** * @dev called by lending pool to approve tokens for disbursement */ function approve(uint256 _amount) external { if (_msgSender() != lendingPool) revert OnlyLendingPool(_msgSender()); wXENE.approve(lendingPool, _amount); } /** * @dev called by the owner to rescue tokens */ function rescueToken(address _token, address _to) external onlyOwner { if (_to == address(0)) revert InvalidAddress(); uint256 _withdrawable = IERC20(_token).balanceOf(address(this)); // Protect the staked wXENE from being withdrawn if (_token == address(wXENE)) { _withdrawable = _withdrawable > poolInfo.stakedSupply ? _withdrawable - poolInfo.stakedSupply : 0; } IERC20(_token).safeTransfer(_to, _withdrawable); } /** * @dev called by the owner to pause, triggers stopped state */ function pause() external onlyOwner whenNotPaused { _pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() external onlyOwner whenPaused { _unpause(); } /** * @dev called by the owner to set lending pool address */ function setLendingPool(address _lendingPool) external onlyOwner { if (_lendingPool == address(0)) revert InvalidAddress(); lendingPool = _lendingPool; } /** * @dev called by the owner to set reward per block */ function setRewardPerBlock(uint256 _rewardPerBlock) external onlyOwner { rewardPerBlock = _rewardPerBlock; } /** * @dev called by the owner to set start block */ function setStartBlock(uint256 _startBlock) external onlyOwner { if (poolInfo.stakedSupply != 0) revert UserAlreadyStaked(); startBlock = _startBlock; poolInfo.lastRewardBlock = _startBlock; } }
File 11 of 59: contracts/TokenBoundAccount/libraries/TokenBoundAccountBytecodeLib.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; library TokenBoundAccountBytecodeLib { function getCreationCode( address implementation_, uint256 chainId_, address tokenContract_, uint256 tokenId_, uint256 salt_ ) internal pure returns (bytes memory) { return abi.encodePacked( hex"3d60ad80600a3d3981f3363d3d373d3d3d363d73", implementation_, hex"5af43d82803e903d91602b57fd5bf3", abi.encode(salt_, chainId_, tokenContract_, tokenId_) ); } }
File 12 of 59: @openzeppelin/contracts/utils/cryptography/ECDSA.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
File 13 of 59: @openzeppelin/contracts/token/ERC721/utils/ERC721Utils.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol"; /** * @dev Library that provide common ERC-721 utility functions. * * See https://eips.ethereum.org/EIPS/eip-721[ERC-721]. * * _Available since v5.1._ */ library ERC721Utils { /** * @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received} * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`). * * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA). * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept * the transfer. */ function checkOnERC721Received( address operator, address from, address to, uint256 tokenId, bytes memory data ) internal { if (to.code.length > 0) { try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) { if (retval != IERC721Receiver.onERC721Received.selector) { // Token rejected revert IERC721Errors.ERC721InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { // non-IERC721Receiver implementer revert IERC721Errors.ERC721InvalidReceiver(to); } else { assembly ("memory-safe") { revert(add(32, reason), mload(reason)) } } } } } }
File 14 of 59: @openzeppelin/contracts/interfaces/IERC1363.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
File 15 of 59: @openzeppelin/contracts/token/ERC721/IERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
File 16 of 59: contracts/TokenBoundAccount/libraries/TokenBoundAccountLib.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Create2} from "@openzeppelin/contracts/utils/Create2.sol"; import {TokenBoundAccountBytecodeLib} from "./TokenBoundAccountBytecodeLib.sol"; library TokenBoundAccountLib { function computeAddress( address registry, address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 _salt ) internal pure returns (address) { bytes32 bytecodeHash = keccak256( TokenBoundAccountBytecodeLib.getCreationCode(implementation, chainId, tokenContract, tokenId, _salt) ); return Create2.computeAddress(bytes32(_salt), bytecodeHash, registry); } function token() internal view returns (uint256, address, uint256) { bytes memory footer = new bytes(0x60); assembly { // copy 0x60 bytes from end of footer extcodecopy(address(), add(footer, 0x20), 0x4d, 0x60) } return abi.decode(footer, (uint256, address, uint256)); } function salt() internal view returns (uint256) { bytes memory footer = new bytes(0x20); assembly { // copy 0x20 bytes from beginning of footer extcodecopy(address(), add(footer, 0x20), 0x2d, 0x20) } return abi.decode(footer, (uint256)); } }
File 17 of 59: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC-721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC-721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
File 18 of 59: contracts/loans/utils/NFTfiSigningUtils.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {LoanData} from "../direct/LoanData.sol"; import {ILendingPool} from "../../LendingPool/interfaces/ILendingPool.sol"; import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; /** * @title NFTfiSigningUtils * @notice Helper contract for Loan. This contract manages verifying signatures from off-chain Loan orders. * Based on the version of this same contract used on Loan V1 */ library NFTfiSigningUtils { /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @dev This function gets the current chain ID. */ function getChainID() public view returns (uint256) { uint256 id; // solhint-disable-next-line no-inline-assembly assembly { id := chainid() } return id; } /** * @notice This function is when the borrower accepts a lender's offer, to validate the lender's signature that the * lender provided off-chain to verify that it did indeed made such offer. * * @param _offer - The offer struct containing: * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.erc20Denomination * - offer.principalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.duration * - offer.adminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - address of this contract * - chainId */ function isValidLenderSignature( LoanData.Offer memory _offer, LoanData.Signature memory _signature ) external view returns (bool) { return isValidLenderSignature(_offer, _signature, address(this)); } /** * @dev This function overload the previous function to allow the caller to specify the address of the contract * * @param _offer - The offer struct containing: * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.erc20Denomination * - offer.principalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.duration * - offer.adminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - address of this contract * - chainId * @param _loanContract contract address of loan */ function isValidLenderSignature( LoanData.Offer memory _offer, LoanData.Signature memory _signature, address _loanContract ) public view returns (bool) { require(block.timestamp <= _signature.expiry, "Lender Signature has expired"); require(_loanContract != address(0), "Loan is zero address"); if (_signature.signer == address(0)) { return false; } else { if (_offer.lendingPool != address(0)) { require(ILendingPool(_offer.lendingPool).isAdmin(_signature.signer), "Signature signer is not admin"); } bytes32 message = keccak256( abi.encodePacked(getEncodedOffer(_offer), getEncodedSignature(_signature), _loanContract, getChainID()) ); return SignatureChecker.isValidSignatureNow( _signature.signer, MessageHashUtils.toEthSignedMessageHash(message), _signature.signature ); } } /** * @notice This function is called in renegotiateLoan() to validate the lender's signature that the lender provided * off-chain to verify that they did indeed want to agree to this loan renegotiation according to these terms. * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _loan The current loan data * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * - expiry - The date when the renegotiation offer expires * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _lenderNonce * - _expiry * - address of this contract * - chainId */ function isValidLenderRenegotiationSignature( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, LoanData.LoanTerms memory _loan, LoanData.Signature memory _signature ) external view returns (bool) { return isValidLenderRenegotiationSignature( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, _loan, _signature, address(this) ); } /** * @dev This function overload the previous function to allow the caller to specify the address of the contract * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _loan The current loan data * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * - expiry - The date when the renegotiation offer expires * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _lenderNonce * - _expiry * - address of this contract * - chainId * * @param _loanContract contract address of loan */ function isValidLenderRenegotiationSignature( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, LoanData.LoanTerms memory _loan, LoanData.Signature memory _signature, address _loanContract ) public view returns (bool) { require(block.timestamp <= _signature.expiry, "Renegotiation Signature has expired"); require(_loanContract != address(0), "Loan is zero address"); if (_loan.useLendingPool) { if (!ILendingPool(_loan.lender).isAdmin(_signature.signer)) return false; } else { if (_signature.signer != _loan.lender) return false; } bytes32 message = keccak256( abi.encodePacked( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, getEncodedSignature(_signature), _loanContract, getChainID() ) ); return SignatureChecker.isValidSignatureNow( _signature.signer, MessageHashUtils.toEthSignedMessageHash(message), _signature.signature ); } /** * @dev We need this to avoid stack too deep errors. * @param _offer - The offer struct containing: * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. */ function getEncodedOffer(LoanData.Offer memory _offer) internal pure returns (bytes memory) { return abi.encodePacked( _offer.erc20Denomination, _offer.principalAmount, _offer.maximumRepaymentAmount, _offer.nftCollateralContract, _offer.nftCollateralId, _offer.duration, _offer.adminFeeInBasisPoints, _offer.lendingPool ); } /** * @dev We need this to avoid stack too deep errors. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.erc20Denomination * - offer.principalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.duration * - offer.adminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - address of this contract * - chainId */ function getEncodedSignature(LoanData.Signature memory _signature) internal pure returns (bytes memory) { return abi.encodePacked(_signature.signer, _signature.nonce, _signature.expiry); } }
File 19 of 59: @openzeppelin/contracts/interfaces/draft-IERC6093.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
File 20 of 59: @openzeppelin/contracts/utils/introspection/IERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
File 21 of 59: @openzeppelin/contracts/utils/Panic.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
File 22 of 59: contracts/TokenBoundAccount/interfaces/ITokenBoundAccount.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; interface ITokenBoundAccountProxy { function implementation() external view returns (address); } /// @dev the ERC-165 identifier for this interface is `0xeff4d378` interface ITokenBoundAccount { event TransactionExecuted(address indexed target, uint256 indexed value, bytes data); receive() external payable; function executeCall(address to, uint256 value, bytes calldata data) external payable returns (bytes memory); function token() external view returns (uint256 chainId, address tokenContract, uint256 tokenId); function owner() external view returns (address); function nonce() external view returns (uint256); }
File 23 of 59: @openzeppelin/contracts/interfaces/IERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "../token/ERC721/IERC721.sol";
File 24 of 59: @openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/extensions/ERC721URIStorage.sol) pragma solidity ^0.8.20; import {ERC721} from "../ERC721.sol"; import {Strings} from "../../../utils/Strings.sol"; import {IERC4906} from "../../../interfaces/IERC4906.sol"; import {IERC165} from "../../../interfaces/IERC165.sol"; /** * @dev ERC-721 token with storage based token URI management. */ abstract contract ERC721URIStorage is IERC4906, ERC721 { using Strings for uint256; // Interface ID as defined in ERC-4906. This does not correspond to a traditional interface ID as ERC-4906 only // defines events and does not include any external function. bytes4 private constant ERC4906_INTERFACE_ID = bytes4(0x49064906); // Optional mapping for token URIs mapping(uint256 tokenId => string) private _tokenURIs; /** * @dev See {IERC165-supportsInterface} */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721, IERC165) returns (bool) { return interfaceId == ERC4906_INTERFACE_ID || super.supportsInterface(interfaceId); } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { _requireOwned(tokenId); string memory _tokenURI = _tokenURIs[tokenId]; string memory base = _baseURI(); // If there is no base URI, return the token URI. if (bytes(base).length == 0) { return _tokenURI; } // If both are set, concatenate the baseURI and tokenURI (via string.concat). if (bytes(_tokenURI).length > 0) { return string.concat(base, _tokenURI); } return super.tokenURI(tokenId); } /** * @dev Sets `_tokenURI` as the tokenURI of `tokenId`. * * Emits {MetadataUpdate}. */ function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual { _tokenURIs[tokenId] = _tokenURI; emit MetadataUpdate(tokenId); } }
File 25 of 59: @openzeppelin/contracts/utils/math/SafeCast.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
File 26 of 59: contracts/TokenBoundAccount/TokenBoundAccount.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import {IERC1271} from "@openzeppelin/contracts/interfaces/IERC1271.sol"; import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; import {ITokenBoundAccount} from "./interfaces/ITokenBoundAccount.sol"; import {TokenBoundAccountLib} from "./libraries/TokenBoundAccountLib.sol"; contract TokenBoundAccount is IERC165, IERC1271, ITokenBoundAccount { uint256 public nonce; receive() external payable {} function executeCall( address to, uint256 value, bytes calldata data ) external payable returns (bytes memory result) { require(msg.sender == owner(), "Not token owner"); ++nonce; emit TransactionExecuted(to, value, data); bool success; (success, result) = to.call{value: value}(data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } } function token() external view returns (uint256, address, uint256) { return TokenBoundAccountLib.token(); } function owner() public view returns (address) { (uint256 chainId, address tokenContract, uint256 tokenId) = this.token(); if (chainId != block.chainid) return address(0); return IERC721(tokenContract).ownerOf(tokenId); } function supportsInterface(bytes4 interfaceId) public pure returns (bool) { return (interfaceId == type(IERC165).interfaceId || interfaceId == type(ITokenBoundAccount).interfaceId); } function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue) { bool isValid = SignatureChecker.isValidSignatureNow(owner(), hash, signature); if (isValid) { return IERC1271.isValidSignature.selector; } return ""; } }
File 27 of 59: contracts/Marketplace/IMarketplace.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /** * @title Marketplace Interface * */ interface IMarketplace { enum ItemStatus { OPENING, SOLD, CLOSED } function makeItem(address _nft, uint256 _tokenId, address _paymentToken, uint256 _price, address _beneficiary) external; function closeItem(uint256 _itemId) external; error InvalidFeeReceiver(); error InvalidFeePercent(); error InvalidNft(); error InvalidPrice(); error InvalidBeneficiary(); error NotPermittedToken(); error NotExistedItem(); error NotOpeningItem(); error NotEnougnETH(); error OnlyItemOwner(); }
File 28 of 59: @openzeppelin/contracts/utils/introspection/ERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
File 29 of 59: contracts/utils/Permission.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; /** * @title Permission * * @notice This abstract contract provides a modifier to restrict the permission of functions. */ abstract contract Permission is Ownable { /* ******* */ /* STORAGE */ /* ******* */ /** * @notice _admins mapping from token ID to isAdmin status */ mapping(address => bool) public admins; /* ****** */ /* EVENTS */ /* ****** */ event SetAdmin(address indexed user, bool allow); /* ********* */ /* ERRORS */ /* ********* */ error AdminUnauthorizedAccount(address account); error PermissionUnauthorizedAccount(address account); error InvalidAddress(); error InvalidLength(); /* ********* */ /* MODIFIERS */ /* ********* */ /** * Throw exception of caller is not admin */ modifier onlyAdmin() { if (owner() != _msgSender() && !admins[_msgSender()]) { revert AdminUnauthorizedAccount(_msgSender()); } _; } /** * Throw exception if _account is not permitted * @param _account Account will be checked */ modifier permittedTo(address _account) { if (_msgSender() != _account) { revert PermissionUnauthorizedAccount(_msgSender()); } _; } /* ****************** */ /* PUBLIC FUNCTIONS */ /* ****************** */ /** * @notice Add/Remove an admin. * @dev Only owner can call this function. * @param _user user address * @param _allow Specific user will be set as admin or not */ function setAdmin(address _user, bool _allow) public virtual onlyOwner { _setAdmin(_user, _allow); } /** * @notice Add/Remove an admin. * @dev Only owner can call this function. * @param _users List of user address * @param _allow Specific users will be set as admin or not */ function setAdmins(address[] memory _users, bool _allow) public virtual onlyOwner { if (_users.length == 0) revert InvalidLength(); for (uint256 i = 0; i < _users.length; i++) { _setAdmin(_users[i], _allow); } } /* ****************** */ /* INTERNAL FUNCTIONS */ /* ****************** */ /** * @notice Add/Remove an admin. * @dev Only owner can call this function. * @param _user User address * @param _allow Specific user will be set as admin or not * * emit {SetAdmin} event */ function _setAdmin(address _user, bool _allow) internal virtual { if (_user == address(0)) revert InvalidAddress(); admins[_user] = _allow; emit SetAdmin(_user, _allow); } /* ****************** */ /* VIEW FUNCTIONS */ /* ****************** */ /** * @notice Check account whether it is the admin role. * @dev Everyone can call * @param _account User's account will be checkedd */ function isAdmin(address _account) external view returns (bool) { return owner() == _account || admins[_account]; } }
File 30 of 59: contracts/loans/direct/DirectLoanFixedOffer.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {DirectLoanBaseMinimal, NFTfiSigningUtils, LoanChecksAndCalculations} from "./DirectLoanBaseMinimal.sol"; /** * @title DirectLoanFixed * @notice Main contract for Loan Direct Loans Fixed Type. This contract manages the ability to create NFT-backed * peer-to-peer loans of type Fixed (agreed to be a fixed-repayment loan) where the borrower pays the * maximumRepaymentAmount regardless of whether they repay early or not. * * There are two ways to commence an NFT-backed loan: * * a. The borrower accepts a lender's offer by calling `acceptOffer`. * 1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their * be1alf. * 2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their * behalf. * 3. the lender signs an off-chain message, proposing its offer terms. * 4. the borrower calls `acceptOffer` to accept these terms and enter into the loan. The NFT is stored in * the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender receives an * Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, or the * underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation receipt * (in ERC721 form) that gives them the right to pay back the loan and get the collateral back. * * b. The lender accepts a borrowe's binding terms by calling `acceptListing`. * 1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their * be1alf. * 2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their * behalf. * 3. the borrower signs an off-chain message, proposing its binding terms. * 4. the lender calls `acceptListing` with an offer matching the binding terms and enter into the loan. The NFT is * stored in the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender * receives an Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, * or the underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation * receipt (in ERC721 form) that gives them the right to pay back the loan and get the collateral back. * * The lender can freely transfer and trade this ERC721 promissory note as they wish, with the knowledge that * transferring the ERC721 promissory note tranfsers the rights to principal-plus-interest and/or collateral, and that * they will no longer have a claim on the loan. The ERC721 promissory note itself represents that claim. * * The borrower can freely transfer and trade this ERC721 obligaiton receipt as they wish, with the knowledge that * transferring the ERC721 obligaiton receipt tranfsers the rights right to pay back the loan and get the collateral * back. * * * A loan may end in one of two ways: * - First, a borrower may call Loan.payBackLoan() and pay back the loan plus interest at any time, in which case they * receive their NFT back in the same transaction. * - Second, if the loan's duration has passed and the loan has not been paid back yet, a lender can call * Loan.liquidateOverdueLoan(), in which case they receive the underlying NFT collateral and forfeit the rights to the * principal-plus-interest, which the borrower now keeps. */ contract DirectLoanFixedOffer is DirectLoanBaseMinimal { /* *********** */ /* CONSTRUCTOR */ /* *********** */ /** * @dev Sets `hub` and permitted erc20-s * * @param _admin - Initial admin of this contract. * @param _permittedErc20s - list of permitted ERC20 token contract addresses */ constructor(address _admin, address[] memory _permittedErc20s) DirectLoanBaseMinimal(_admin, _permittedErc20s) { // solhint-disable-previous-line no-empty-blocks } /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @notice This function is called by the borrower when accepting a lender's offer to begin a loan. * * @param _loanId - offchain id of loan * @param _offer - The offer made by the lender. * @param _signature - The components of the lender's signature. */ function acceptOffer(bytes32 _loanId, Offer memory _offer, Signature memory _signature) external whenNotPaused nonReentrant { _loanSanityChecks(_offer); _loanSanityChecksOffer(_offer); address lender = _offer.lendingPool != address(0) ? _offer.lendingPool : _signature.signer; _acceptOffer(_loanId, _setupLoanTerms(_offer, lender), _offer, _signature); } /* ****************** */ /* INTERNAL FUNCTIONS */ /* ****************** */ /** * @notice This function is called by the borrower when accepting a lender's offer to begin a loan. * * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan. * @param _offer - The offer made by the lender. * @param _signature - The components of the lender's signature. */ function _acceptOffer(bytes32 _loanId, LoanTerms memory _loanTerms, Offer memory _offer, Signature memory _signature) internal { // Check loan nonces. These are different from Ethereum account nonces. // Here, these are uint256 numbers that should uniquely identify // each signature for each user (i.e. each user should only create one // off-chain signature for each nonce, with a nonce being any arbitrary // uint256 value that they have not used yet for an off-chain Loan // signature). require(!_nonceHasBeenUsedForUser[_signature.signer][_signature.nonce], "Lender nonce invalid"); _nonceHasBeenUsedForUser[_signature.signer][_signature.nonce] = true; require(NFTfiSigningUtils.isValidLenderSignature(_offer, _signature), "Lender signature is invalid"); _createLoan(_loanId, _loanTerms, msg.sender, _loanTerms.lender); // Emit an event with all relevant details from this transaction. emit LoanStarted(_loanId, msg.sender, _loanTerms.lender, _loanTerms); } /** * @dev Creates a `LoanTerms` struct using data sent as the lender's `_offer` on `acceptOffer`. * This is needed in order to avoid stack too deep issues. */ function _setupLoanTerms(Offer memory _offer, address _lender) internal view returns (LoanTerms memory) { return LoanTerms({ erc20Denomination: _offer.erc20Denomination, principalAmount: _offer.principalAmount, maximumRepaymentAmount: _offer.maximumRepaymentAmount, nftCollateralContract: _offer.nftCollateralContract, nftCollateralId: _offer.nftCollateralId, loanStartTime: uint64(block.timestamp), duration: _offer.duration, adminFeeInBasisPoints: _offer.adminFeeInBasisPoints, borrower: msg.sender, lender: _lender, useLendingPool: _offer.lendingPool != address(0) }); } /** * @dev Calculates the payoff amount and admin fee * * @param _loanTerms - Struct containing all the loan's parameters */ function _payoffAndFee(LoanTerms memory _loanTerms) internal pure override returns (uint256 adminFee, uint256 payoffAmount) { // Calculate amounts to send to lender and admins uint256 interestDue = _loanTerms.maximumRepaymentAmount - _loanTerms.principalAmount; adminFee = LoanChecksAndCalculations.computeAdminFee(interestDue, uint256(_loanTerms.adminFeeInBasisPoints)); payoffAmount = _loanTerms.maximumRepaymentAmount - adminFee; } /** * @dev Function that performs some validation checks over loan parameters when accepting an offer * */ function _loanSanityChecksOffer(Offer memory _offer) internal pure { require(_offer.maximumRepaymentAmount >= _offer.principalAmount, "Negative interest rate loans are not allowed."); } }
File 31 of 59: contracts/LendingPool/LendingPool.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol"; import {Permission, Ownable} from "../utils/Permission.sol"; import {IMarketplace} from "../Marketplace/IMarketplace.sol"; import {ILendingStake} from "./interfaces/ILendingStake.sol"; /** * @title LendingPool * @dev A main management contract for lending pool. */ contract LendingPool is Permission, Pausable, ReentrancyGuard, ERC721Holder { using SafeERC20 for IERC20; address public loan; address public lendingStake; address public marketplace; event SetLoan(address indexed oldValue, address indexed newValue); event SetLendingStake(address indexed oldValue, address indexed newValue); event SetMarketplace(address indexed oldValue, address indexed newValue); event Disbursed(address indexed token, address indexed to, uint256 amount); event PaidBack(address indexed token, uint256 amount); event ListNftToMarket(address indexed nftContract, uint256 indexed nftTokenId, uint256 indexed price); constructor(address _initialOwner) Ownable(_initialOwner) {} /** * @dev called by the owner to set loan contract address */ function setLoan(address _loan) external onlyOwner { if (_loan == address(0)) revert InvalidAddress(); address _oldValue = loan; loan = _loan; emit SetLoan(_oldValue, loan); } /** * @dev called by the owner to set lending stake contract address */ function setLendingStake(address _lendingStake) external onlyOwner { if (_lendingStake == address(0)) revert InvalidAddress(); address _oldValue = lendingStake; lendingStake = _lendingStake; emit SetLendingStake(_oldValue, lendingStake); } /** * @dev called by the owner to set marketplace contract address */ function setMarketplace(address _marketplace) external onlyOwner { if (_marketplace == address(0)) revert InvalidAddress(); address _oldValue = marketplace; marketplace = _marketplace; emit SetMarketplace(_oldValue, marketplace); } /** * @dev called by loan contract to disburse token to borrower */ function informDisburse(address _token, address _to, uint256 _amount) external nonReentrant whenNotPaused permittedTo(loan) { ILendingStake(lendingStake).approve(_amount); IERC20(_token).safeTransferFrom(lendingStake, _to, _amount); emit Disbursed(_token, _to, _amount); } /** * @dev called by loan contract to pay back token to lending stake */ function informPayBack(address _token, uint256 _principal) external whenNotPaused permittedTo(loan) { IERC20(_token).safeTransfer(lendingStake, _principal); emit PaidBack(_token, _principal); } /** * @dev called by the owner to list NFT to marketplace */ function listNftToMarket(address _nftContract, uint256 _nftTokenId, uint256 _price) external whenNotPaused onlyAdmin { IERC721(_nftContract).approve(marketplace, _nftTokenId); IMarketplace(marketplace).makeItem(_nftContract, _nftTokenId, ILendingStake(lendingStake).wXENE(), _price, lendingStake); } /** * @dev called by the owner to withdraw NFT from marketplace */ function withdrawNftFromMarket(uint256 _marketItemId) external whenNotPaused onlyAdmin { IMarketplace(marketplace).closeItem(_marketItemId); } /** * @dev called by lending stake contract to approve token to pay rewards */ function approveToPayRewards(address _token, uint256 _amount) external whenNotPaused permittedTo(lendingStake) { IERC20(_token).approve(lendingStake, _amount); } /** * @dev called by the owner to rescue token from contract */ function rescueToken(address _token, address _to, uint256 _amount) external onlyOwner { if (_to == address(0)) revert InvalidAddress(); IERC20(_token).safeTransfer(_to, _amount); } /** * @dev called by the owner to rescue nft from contract */ function rescueNft(address _nftContract, uint256 _nftTokenId, address _to) external onlyOwner { if (_to == address(0)) revert InvalidAddress(); IERC721(_nftContract).transferFrom(address(this), _to, _nftTokenId); } /** * @dev called by the owner to pause, triggers stopped state */ function pause() external onlyOwner whenNotPaused { _pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() external onlyOwner whenPaused { _unpause(); } }
File 32 of 59: @openzeppelin/contracts/utils/ReentrancyGuard.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
File 33 of 59: @openzeppelin/contracts/token/ERC721/ERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "./IERC721.sol"; import {IERC721Metadata} from "./extensions/IERC721Metadata.sol"; import {ERC721Utils} from "./utils/ERC721Utils.sol"; import {Context} from "../../utils/Context.sol"; import {Strings} from "../../utils/Strings.sol"; import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol"; import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors { using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; mapping(uint256 tokenId => address) private _owners; mapping(address owner => uint256) private _balances; mapping(uint256 tokenId => address) private _tokenApprovals; mapping(address owner => mapping(address operator => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual returns (uint256) { if (owner == address(0)) { revert ERC721InvalidOwner(address(0)); } return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual returns (address) { return _requireOwned(tokenId); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual returns (string memory) { _requireOwned(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual { _approve(to, tokenId, _msgSender()); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual returns (address) { _requireOwned(tokenId); return _getApproved(tokenId); } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here. address previousOwner = _update(to, tokenId, _msgSender()); if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual { transferFrom(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist * * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`. */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted. */ function _getApproved(uint256 tokenId) internal view virtual returns (address) { return _tokenApprovals[tokenId]; } /** * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in * particular (ignoring whether it is owned by `owner`). * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) { return spender != address(0) && (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender); } /** * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner. * Reverts if: * - `spender` does not have approval from `owner` for `tokenId`. * - `spender` does not have approval to manage all of `owner`'s assets. * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual { if (!_isAuthorized(owner, spender, tokenId)) { if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } else { revert ERC721InsufficientApproval(spender, tokenId); } } } /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that * a uint256 would ever overflow from increments when these increments are bounded to uint128 values. * * WARNING: Increasing an account's balance using this function tends to be paired with an override of the * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership * remain consistent with one another. */ function _increaseBalance(address account, uint128 value) internal virtual { unchecked { _balances[account] += value; } } /** * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update. * * The `auth` argument is optional. If the value passed is non 0, then this function will check that * `auth` is either the owner of the token, or approved to operate on the token (by the owner). * * Emits a {Transfer} event. * * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}. */ function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) { address from = _ownerOf(tokenId); // Perform (optional) operator check if (auth != address(0)) { _checkAuthorized(from, auth, tokenId); } // Execute the update if (from != address(0)) { // Clear approval. No need to re-authorize or emit the Approval event _approve(address(0), tokenId, address(0), false); unchecked { _balances[from] -= 1; } } if (to != address(0)) { unchecked { _balances[to] += 1; } } _owners[tokenId] = to; emit Transfer(from, to, tokenId); return from; } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner != address(0)) { revert ERC721InvalidSender(address(0)); } } /** * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual { _mint(to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal { address previousOwner = _update(address(0), tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } else if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients * are aware of the ERC-721 standard to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is like {safeTransferFrom} in the sense that it invokes * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `tokenId` token must exist and be owned by `from`. * - `to` cannot be the zero address. * - `from` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId) internal { _safeTransfer(from, to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual { _transfer(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Approve `to` to operate on `tokenId` * * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is * either the owner of the token, or approved to operate on all tokens held by this owner. * * Emits an {Approval} event. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address to, uint256 tokenId, address auth) internal { _approve(to, tokenId, auth, true); } /** * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not * emitted in the context of transfers. */ function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual { // Avoid reading the owner unless necessary if (emitEvent || auth != address(0)) { address owner = _requireOwned(tokenId); // We do not use _isAuthorized because single-token approvals should not be able to call approve if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) { revert ERC721InvalidApprover(auth); } if (emitEvent) { emit Approval(owner, to, tokenId); } } _tokenApprovals[tokenId] = to; } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Requirements: * - operator can't be the address zero. * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { if (operator == address(0)) { revert ERC721InvalidOperator(operator); } _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned). * Returns the owner. * * Overrides to ownership logic should be done to {_ownerOf}. */ function _requireOwned(uint256 tokenId) internal view returns (address) { address owner = _ownerOf(tokenId); if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } return owner; } }
File 34 of 59: @openzeppelin/contracts/interfaces/IERC4906.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4906.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; import {IERC721} from "./IERC721.sol"; /// @title ERC-721 Metadata Update Extension interface IERC4906 is IERC165, IERC721 { /// @dev This event emits when the metadata of a token is changed. /// So that the third-party platforms such as NFT market could /// timely update the images and related attributes of the NFT. event MetadataUpdate(uint256 _tokenId); /// @dev This event emits when the metadata of a range of tokens is changed. /// So that the third-party platforms such as NFT market could /// timely update the images and related attributes of the NFTs. event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId); }
File 35 of 59: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
File 36 of 59: contracts/loans/direct/LoanData.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /** * @title LoanData * @notice An interface containg the main Loan struct shared by Direct Loans types. */ interface LoanData { /* ********** */ /* DATA TYPES */ /* ********** */ /** * @notice The main Loan Terms struct. This data is saved upon loan creation. * * @param erc20Denomination - The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * @param maximumRepaymentAmount - The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * @param nftCollateralContract - The address of the the NFT collateral contract. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param loanStartTime - The block.timestamp when the loan first began (measured in seconds). * @param duration - The amount of time (measured in seconds) that can elapse before the lender can liquidate * the loan and seize the underlying collateral NFT. * @param adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param lender - Address of lender * @param useLendingPool - If true, lender is a contract */ struct LoanTerms { uint256 principalAmount; uint256 maximumRepaymentAmount; uint256 nftCollateralId; address erc20Denomination; uint32 duration; uint16 adminFeeInBasisPoints; uint64 loanStartTime; address nftCollateralContract; address borrower; address lender; bool useLendingPool; } /** * @notice The offer made by the lender. Used as parameter on both acceptOffer (initiated by the borrower) and * acceptListing (initiated by the lender). * * @param erc20Denomination - The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * @param maximumRepaymentAmount - The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always * have to pay this amount to retrieve their collateral, regardless of whether they repay early. * @param nftCollateralContract - The address of the ERC721 contract of the NFT collateral. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param referrer - The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * @param duration - The amount of time (measured in seconds) that can elapse before the lender can liquidate * the loan and seize the underlying collateral NFT. * @param adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param lendingPool - Lending pool address is contract that will disburse loan, signature signer must * be admin of contract If lender is a wallet, this address must be ZERO address */ struct Offer { uint256 principalAmount; uint256 maximumRepaymentAmount; uint256 nftCollateralId; address nftCollateralContract; uint32 duration; uint16 adminFeeInBasisPoints; address erc20Denomination; address lendingPool; } /** * @notice Signature related params. Used as parameter on both acceptOffer (containing borrower signature) and * acceptListing (containing lender signature). * * @param signer - The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * @param nonce - The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * @param expiry - Date when the signature expires * @param signature - The ECDSA signature of the borrower or the lender, obtained off-chain ahead of time, signing * the following combination of parameters: * - Lender: * - Offer.erc20Denomination * - Offer.principalAmount * - Offer.maximumRepaymentAmount * - Offer.nftCollateralContract * - Offer.nftCollateralId * - Offer.duration * - Offer.adminFeeInBasisPoints * - Offer.useLendingPool * - Offer.lendingPool * - Signature.signer, * - Signature.nonce, * - Signature.expiry, * - address of the loan type contract * - chainId */ struct Signature { uint256 nonce; uint256 expiry; address signer; bytes signature; } }
File 37 of 59: @openzeppelin/contracts/interfaces/IERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
File 38 of 59: @openzeppelin/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
File 39 of 59: contracts/WXENE.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; contract WXENE is ERC20 { event Minted(address account, uint256 amount); event Burnt(address account, uint256 amount); error TransferNativeFailed(); /* *********** */ /* CONSTRUCTOR */ /* *********** */ constructor() ERC20("Wrapped XENE", "wXENE") {} /* ****************** */ /* EXTERNAL FUNCTIONS */ /* ****************** */ /** * @notice Mint wXENE to user * @dev Everyone can call this function * * emit {Minted} event */ function mint() external payable { _mint(_msgSender(), msg.value); emit Minted(_msgSender(), msg.value); } /** * @notice Mint wXENE to a specific user * @dev Everyone can call this function * * emit {Minted} event */ function mintTo(address _receiver) external payable { _mint(_receiver, msg.value); emit Minted(_receiver, msg.value); } /** * @notice Burn wXENE and transfer XENE to user * @param _amount Amount of token * * emit {Burnt} event */ function burn(uint256 _amount) external { _burn(_msgSender(), _amount); (bool success, ) = (_msgSender()).call{value: _amount}(""); if (!success) revert TransferNativeFailed(); emit Burnt(_msgSender(), _amount); } }
File 40 of 59: @openzeppelin/contracts/token/ERC20/IERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
File 41 of 59: @openzeppelin/contracts/utils/math/SignedMath.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
File 42 of 59: contracts/loans/direct/DirectLoanBaseMinimal.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {IDirectLoanBase} from "./IDirectLoanBase.sol"; import {LoanData} from "./LoanData.sol"; import {LoanChecksAndCalculations} from "./LoanChecksAndCalculations.sol"; import {BaseLoan} from "../BaseLoan.sol"; import {NFTfiSigningUtils, ILendingPool} from "../utils/NFTfiSigningUtils.sol"; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; /** * @title DirectLoanBase * @notice Main contract for Loan Direct Loans Type. This contract manages the ability to create NFT-backed * peer-to-peer loans. * * There are two ways to commence an NFT-backed loan: * * a. The borrower accepts a lender's offer by calling `acceptOffer`. * 1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their * be1alf. * 2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their * behalf. * 3. the lender signs an off-chain message, proposing its offer terms. * 4. the borrower calls `acceptOffer` to accept these terms and enter into the loan. The NFT is stored in * the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender receives an * Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, or the * underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation receipt * (in ERC721 form) that gives them the right to pay back the loan and get the collateral back. * * b. The lender accepts a borrowe's binding terms by calling `acceptListing`. * 1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their * be1alf. * 2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their * behalf. * 3. the borrower signs an off-chain message, proposing its binding terms. * 4. the lender calls `acceptListing` with an offer matching the binding terms and enter into the loan. The NFT is * stored in the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender * receives an Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, * or the underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation * receipt (in ERC721 form) that gives them the right to pay back the loan and get the collateral back. * * The lender can freely transfer and trade this ERC721 promissory note as they wish, with the knowledge that * transferring the ERC721 promissory note tranfsers the rights to principal-plus-interest and/or collateral, and that * they will no longer have a claim on the loan. The ERC721 promissory note itself represents that claim. * * The borrower can freely transfer and trade this ERC721 obligaiton receipt as they wish, with the knowledge that * transferring the ERC721 obligaiton receipt tranfsers the rights right to pay back the loan and get the collateral * back. * * A loan may end in one of two ways: * - First, a borrower may call Loan.payBackLoan() and pay back the loan plus interest at any time, in which case they * receive their NFT back in the same transaction. * - Second, if the loan's duration has passed and the loan has not been paid back yet, a lender can call * Loan.liquidateOverdueLoan(), in which case they receive the underlying NFT collateral and forfeit the rights to the * principal-plus-interest, which the borrower now keeps. * * * If the loan was created as a ProRated type loan (pro-rata interest loan), then the user only pays the principal plus * pro-rata interest if repaid early. * However, if the loan was was created as a Fixed type loan (agreed to be a fixed-repayment loan), then the borrower * pays the maximumRepaymentAmount regardless of whether they repay early or not. * */ abstract contract DirectLoanBaseMinimal is IDirectLoanBase, BaseLoan, ERC721Holder, LoanData { using SafeERC20 for IERC20; /* ******* */ /* STORAGE */ /* ******* */ uint16 public constant HUNDRED_PERCENT = 10000; /** * @notice The maximum duration of any loan started for this loan type, measured in seconds. This is both a * sanity-check for borrowers and an upper limit on how long admins will have to support v1 of this contract if they * eventually deprecate it, as well as a check to ensure that the loan duration never exceeds the space alotted for * it in the loan struct. */ uint256 public override maximumLoanDuration = 53 weeks; /** * @notice The percentage of interest earned by lenders on this platform that is taken by the contract admin's as a * fee, measured in basis points (hundreths of a percent). The max allowed value is 10000. */ uint16 public override adminFeeInBasisPoints = 25; /** * @notice A mapping from a loan's identifier to the loan's details, represted by the loan struct. */ mapping(bytes32 => LoanTerms) public loanIdToLoan; /** * @notice A mapping tracking whether a loan has either been repaid or liquidated. This prevents an attacker trying * to repay or liquidate the same loan twice. */ mapping(bytes32 => bool) public loanRepaidOrLiquidated; /** * @dev keeps track of tokens being held as loan collateral, so we dont allow these * to be transferred with the aridrop draining functions */ mapping(address => mapping(uint256 => uint256)) private _escrowTokens; /** * @notice A mapping that takes both a user's address and a loan nonce that was first used when signing an off-chain * order and checks whether that nonce has previously either been used for a loan, or has been pre-emptively * cancelled. The nonce referred to here is not the same as an Ethereum account's nonce. We are referring instead to * nonces that are used by both the lender and the borrower when they are first signing off-chain Loan orders. * * These nonces can be any uint256 value that the user has not previously used to sign an off-chain order. Each * nonce can be used at most once per user within Loan, regardless of whether they are the lender or the borrower * in that situation. This serves two purposes. First, it prevents replay attacks where an attacker would submit a * user's off-chain order more than once. Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. */ mapping(address => mapping(uint256 => bool)) internal _nonceHasBeenUsedForUser; /** * @notice A mapping from an ERC20 currency address to whether that currency * is permitted to be used by this contract. */ mapping(address => bool) private erc20Permits; /** * @notice A mapping from an NFT contract's address to the Token type of that contract. A zero Token Type indicates * non-permitted. */ mapping(address => bool) private nftPermits; /* ****** */ /* EVENTS */ /* ****** */ /** * @notice This event is fired whenever the admins change the percent of interest rates earned that they charge as a * fee. Note that newAdminFee can never exceed 10,000, since the fee is measured in basis points. * * @param newAdminFee - The new admin fee measured in basis points. This is a percent of the interest paid upon a * loan's completion that go to the contract admins. */ event AdminFeeUpdated(uint16 newAdminFee); /** * @notice This event is fired whenever the admins change the maximum duration of any loan started for this loan * type. * * @param newMaximumLoanDuration - The new maximum duration. */ event MaximumLoanDurationUpdated(uint256 newMaximumLoanDuration); /** * @notice This event is fired whenever a borrower begins a loan by calling Loan.beginLoan(), which can only occur * after both the lender and borrower have approved their ERC721 and ERC20 contracts to use Loan, and when they * both have signed off-chain messages that agree on the terms of the loan. * * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param borrower - The address of the borrower. * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721 * token that they received when the loan began. */ event LoanStarted(bytes32 indexed loanId, address indexed borrower, address indexed lender, LoanTerms loanTerms); /** * @notice This event is fired whenever a borrower successfully repays their loan, paying * principal-plus-interest-minus-fee to the lender in erc20Denomination, paying fee to owner in * erc20Denomination, and receiving their NFT collateral back. * * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param borrower - The address of the borrower. * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721 * token that they received when the loan began. * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param amountPaidToLender - The amount of ERC20 that the borrower paid to the lender, measured in the smalled * units of erc20Denomination. * @param adminFee - The amount of interest paid to the contract admins, measured in the smalled units of * erc20Denomination and determined by adminFeeInBasisPoints. This amount never exceeds the amount of interest * earned. * @param interest - The amount of interest paid to the lender. * @param nftCollateralContract - The ERC721 contract of the NFT collateral * @param erc20Denomination - The ERC20 contract of the currency being used as principal/interest for this * loan. */ event LoanRepaid( bytes32 indexed loanId, address indexed borrower, address indexed lender, uint256 principalAmount, uint256 nftCollateralId, uint256 amountPaidToLender, uint256 adminFee, uint256 interest, address nftCollateralContract, address erc20Denomination ); /** * @notice This event is fired whenever a lender liquidates an outstanding loan that is owned to them that has * exceeded its duration. The lender receives the underlying NFT collateral, and the borrower no longer needs to * repay the loan principal-plus-interest. * * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param borrower - The address of the borrower. * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721 * token that they received when the loan began. * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param loanMaturityDate - The unix time (measured in seconds) that the loan became due and was eligible for * liquidation. * @param loanLiquidationDate - The unix time (measured in seconds) that liquidation occurred. * @param nftCollateralContract - The ERC721 contract of the NFT collateral */ event LoanLiquidated( bytes32 indexed loanId, address indexed borrower, address indexed lender, uint256 principalAmount, uint256 nftCollateralId, uint256 loanMaturityDate, uint256 loanLiquidationDate, address nftCollateralContract ); /** * @notice This event is fired when some of the terms of a loan are being renegotiated. * * @param loanId - The unique identifier for the loan to be renegotiated * @param newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param renegotiationFee Agreed upon fee in loan denomination that borrower pays for the lender for the * renegotiation, has to be paid with an ERC20 transfer erc20Denomination token, uses transfer from, * frontend will have to propmt an erc20 approve for this from the borrower to the lender * @param renegotiationAdminFee renegotiationFee admin portion based on determined by adminFeeInBasisPoints */ event LoanRenegotiated( bytes32 indexed loanId, address indexed borrower, address indexed lender, uint32 newLoanDuration, uint256 newMaximumRepaymentAmount, uint256 renegotiationFee, uint256 renegotiationAdminFee ); /** * @notice This event is fired whenever the admin sets a ERC20 permit. * * @param erc20Contract - Address of the ERC20 contract. * @param isPermitted - Signals ERC20 permit. */ event ERC20Permit(address indexed erc20Contract, bool isPermitted); /* *********** */ /* CONSTRUCTOR */ /* *********** */ /** * @dev Sets `permittedNFTs` * * @param _admin - Initial admin of this contract. * @param _permittedErc20s - */ constructor(address _admin, address[] memory _permittedErc20s) BaseLoan(_admin) { for (uint256 i = 0; i < _permittedErc20s.length; i++) { _setERC20Permit(_permittedErc20s[i], true); } } /** * @notice This function can be called by admins to change the maximumLoanDuration. Note that they can never change * maximumLoanDuration to be greater than UINT32_MAX, since that's the maximum space alotted for the duration in the * loan struct. * * @param _newMaximumLoanDuration - The new maximum loan duration, measured in seconds. * * emit {MaximumLoanDurationUpdated} event */ function updateMaximumLoanDuration(uint256 _newMaximumLoanDuration) external onlyOwner { require(_newMaximumLoanDuration <= uint256(type(uint32).max), "Loan duration overflow"); maximumLoanDuration = _newMaximumLoanDuration; emit MaximumLoanDurationUpdated(_newMaximumLoanDuration); } /** * @notice This function can be called by admins to change the percent of interest rates earned that they charge as * a fee. Note that newAdminFee can never exceed 10,000, since the fee is measured in basis points. * * @param _newAdminFeeInBasisPoints - The new admin fee measured in basis points. This is a percent of the interest * paid upon a loan's completion that go to the contract admins. * * emit {AdminFeeUpdated} event */ function updateAdminFee(uint16 _newAdminFeeInBasisPoints) external onlyOwner { require(_newAdminFeeInBasisPoints <= HUNDRED_PERCENT, "basis points > 10000"); adminFeeInBasisPoints = _newAdminFeeInBasisPoints; emit AdminFeeUpdated(_newAdminFeeInBasisPoints); } /** * @notice used by the owner account to be able to drain ERC20 tokens received as airdrops * for the locked collateral NFT-s * @param _tokenAddress - address of the token contract for the token to be sent out * @param _receiver - receiver of the token */ function drainERC20Airdrop(address _tokenAddress, address _receiver) external onlyOwner { IERC20 tokenContract = IERC20(_tokenAddress); uint256 amount = tokenContract.balanceOf(address(this)); IERC20(_tokenAddress).safeTransfer(_receiver, amount); } /** * @notice This function can be called by admins to change the permitted status of an ERC20 currency. This includes * both adding an ERC20 currency to the permitted list and removing it. * * @param _erc20 - The address of the ERC20 currency whose permit list status changed. * @param _permit - The new status of whether the currency is permitted or not. */ function setERC20Permit(address _erc20, bool _permit) external onlyOwner { _setERC20Permit(_erc20, _permit); } /** * @notice This function changes the permitted list status of an NFT contract. This includes both adding an NFT * contract to the permitted list and removing it. * @param _nftContract - The address of the NFT contract. * @param _isPermitted - true - enable / false - disable */ function setNFTPermit(address _nftContract, bool _isPermitted) external onlyOwner { require(_nftContract != address(0), "Invalid nft address"); nftPermits[_nftContract] = _isPermitted; } /** * @notice used by the owner account to be able to drain ERC721 tokens received as airdrops * for the locked collateral NFT-s * @param _tokenAddress - address of the token contract for the token to be sent out * @param _tokenId - id token to be sent out * @param _receiver - receiver of the token */ function drainERC721Airdrop(address _tokenAddress, uint256 _tokenId, address _receiver) external onlyOwner { require(_escrowTokens[_tokenAddress][_tokenId] == 0, "token is collateral"); IERC721(_tokenAddress).transferFrom(address(this), _receiver, _tokenId); } /** * @dev makes possible to change loan duration and max repayment amount, loan duration even can be extended if * loan was expired but not liquidated. * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _signature - The components of the lender's signature. * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _expiry - The date when the renegotiation offer expires * - address of this contract * - chainId */ function renegotiateLoan( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, Signature calldata _signature ) external whenNotPaused nonReentrant { _renegotiateLoan(_loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, _signature); } /** * @notice This function is called by a anyone to repay a loan. It can be called at any time after the loan has * begun and before loan expiry.. The caller will pay a pro-rata portion of their interest if the loan is paid off * early and the loan is pro-rated type, but the complete repayment amount if it is fixed type. * The the borrower (current owner of the obligation note) will get the collaterl NFT back. * * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause the * contract and hold hostage the NFT's that are still within it. * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. */ function payBackLoan(bytes32 _loanId) external whenNotPaused nonReentrant { LoanChecksAndCalculations.payBackChecks(_loanId); (address borrower, address lender, LoanTerms memory loan) = _getPartiesAndData(_loanId); _payBackLoan(_loanId, borrower, lender, loan); _resolveLoan(_loanId, borrower, loan); // Delete the loan from storage in order to achieve a substantial gas savings and to lessen the burden of // storage on Ethereum nodes, since we will never access this loan's details again, and the details are still // available through event data. delete loanIdToLoan[_loanId]; } /** * @notice This function is called by a lender once a loan has finished its duration and the borrower still has not * repaid. The lender can call this function to seize the underlying NFT collateral, although the lender gives up * all rights to the principal-plus-collateral by doing so. * * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause * the contract and hold hostage the NFT's that are still within it. * * We intentionally allow anybody to call this function, although only the lender will end up receiving the seized * collateral. We are exploring the possbility of incentivizing users to call this function by using some of the * admin funds. * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. * * emit {LoanLiquidated} event */ function liquidateOverdueLoan(bytes32 _loanId) external whenNotPaused nonReentrant { // Sanity check that payBackLoan() and liquidateOverdueLoan() have never been called on this loanId. // Depending on how the rest of the code turns out, this check may be unnecessary. LoanChecksAndCalculations.checkLoanIdValidity(_loanId); (address borrower, address lender, LoanTerms memory loan) = _getPartiesAndData(_loanId); // Ensure that the loan is indeed overdue, since we can only liquidate overdue loans. uint256 loanMaturityDate = uint256(loan.loanStartTime) + uint256(loan.duration); require(block.timestamp > loanMaturityDate, "Loan is not overdue yet"); if (loan.useLendingPool) { require(ILendingPool(lender).isAdmin(msg.sender), "Only Lending pool admin can liquidate"); } else { require(msg.sender == lender, "Only lender can liquidate"); } _resolveLoan(_loanId, lender, loan); // Emit an event with all relevant details from this transaction. emit LoanLiquidated(_loanId, borrower, lender, loan.principalAmount, loan.nftCollateralId, loanMaturityDate, block.timestamp, loan.nftCollateralContract); // Delete the loan from storage in order to achieve a substantial gas savings and to lessen the burden of // storage on Ethereum nodes, since we will never access this loan's details again, and the details are still // available through event data. delete loanIdToLoan[_loanId]; } /** * @notice This function can be called by either a lender or a borrower to cancel all off-chain orders that they * have signed that contain this nonce. If the off-chain orders were created correctly, there should only be one * off-chain order that contains this nonce at all. * * The nonce referred to here is not the same as an Ethereum account's nonce. We are referring * instead to nonces that are used by both the lender and the borrower when they are first signing off-chain Loan * orders. These nonces can be any uint256 value that the user has not previously used to sign an off-chain order. * Each nonce can be used at most once per user within Loan, regardless of whether they are the lender or the * borrower in that situation. This serves two purposes. First, it prevents replay attacks where an attacker would * submit a user's off-chain order more than once. Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * * @param _nonce - User nonce */ function cancelLoanCommitmentBeforeLoanHasBegun(uint256 _nonce) external whenNotPaused { require(!_nonceHasBeenUsedForUser[msg.sender][_nonce], "Invalid nonce"); _nonceHasBeenUsedForUser[msg.sender][_nonce] = true; } /* ******************* */ /* READ-ONLY FUNCTIONS */ /* ******************* */ /** * @notice This function can be used to view whether a particular nonce for a particular user has already been used, * either from a successful loan or a cancelled off-chain order. * * @param _user - The address of the user. This function works for both lenders and borrowers alike. * @param _nonce - The nonce referred to here is not the same as an Ethereum account's nonce. We are referring * instead to nonces that are used by both the lender and the borrower when they are first signing off-chain * Loan orders. These nonces can be any uint256 value that the user has not previously used to sign an off-chain * order. Each nonce can be used at most once per user within Loan, regardless of whether they are the lender or * the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * * @return A bool representing whether or not this nonce has been used for this user. */ function getWhetherNonceHasBeenUsedForUser(address _user, uint256 _nonce) external view override returns (bool) { return _nonceHasBeenUsedForUser[_user][_nonce]; } /** * @notice This function can be called by anyone to get the permit associated with the erc20 contract. * * @param _erc20 - The address of the erc20 contract. * * @return Returns whether the erc20 is permitted */ function getERC20Permit(address _erc20) public view returns (bool) { return erc20Permits[_erc20]; } /** * @notice This function can be called by anyone to get the permit associated with the erc20 contract. * * @param _nftContract - The address of the NFT contract. * * @return Returns whether the erc20 is permitted */ function getNftPermit(address _nftContract) public view returns (bool) { return nftPermits[_nftContract]; } /* ****************** */ /* INTERNAL FUNCTIONS */ /* ****************** */ /** * @dev makes possible to change loan duration and max repayment amount, loan duration even can be extended if * loan was expired but not liquidated. IMPORTANT: Frontend will have to propt the caller to do an ERC20 approve for * the fee amount from themselves (borrower/obligation reciept holder) to the lender (promissory note holder) * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in loan denomination that borrower pays for the lender and * the admin for the renegotiation, has to be paid with an ERC20 transfer erc20Denomination token, * uses transfer from, frontend will have to propmt an erc20 approve for this from the borrower to the lender, * admin fee is calculated by the loan's adminFeeInBasisPoints value * @param _signature - The components of the lender's signature. * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _expiry - The date when the renegotiation offer expires * - address of this contract * - chainId * * emit {LoanRenegotiated} event */ function _renegotiateLoan( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, Signature calldata _signature ) internal { LoanTerms storage loan = loanIdToLoan[_loanId]; (address borrower, address lender) = LoanChecksAndCalculations.renegotiationChecks(loan, _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _signature.nonce); _nonceHasBeenUsedForUser[lender][_signature.nonce] = true; require( NFTfiSigningUtils.isValidLenderRenegotiationSignature( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, loan, _signature ), "Renegotiation signature is invalid" ); uint256 renegotiationAdminFee = 0; /** * @notice Transfers fee to the lender immediately * @dev implements Checks-Effects-Interactions pattern by modifying state only after * the transfer happened successfully, we also add the nonReentrant modifier to * the pbulic versions */ if (_renegotiationFee > 0) { renegotiationAdminFee = LoanChecksAndCalculations.computeAdminFee(_renegotiationFee, loan.adminFeeInBasisPoints); // Transfer principal-plus-interest-minus-fees from the caller (always has to be borrower) to lender IERC20(loan.erc20Denomination).safeTransferFrom(borrower, lender, _renegotiationFee - renegotiationAdminFee); // Transfer fees from the caller (always has to be borrower) to admins IERC20(loan.erc20Denomination).safeTransferFrom(borrower, owner(), renegotiationAdminFee); } loan.duration = _newLoanDuration; loan.maximumRepaymentAmount = _newMaximumRepaymentAmount; emit LoanRenegotiated(_loanId, borrower, lender, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, renegotiationAdminFee); } /** * @dev Transfer collateral NFT from borrower to this contract and principal from lender to the borrower and * registers the new loan through the loan coordinator. * * @param _loanTerms - Struct containing the loan's settings * @param _lender - The address of the lender. * that there is no referrer. */ function _createLoan(bytes32 _loanId, LoanTerms memory _loanTerms, address _borrower, address _lender) internal { // Transfer collateral from borrower to this contract to be held until // loan completion. _transferNFT(_loanTerms, _borrower, address(this)); _createLoanNoNftTransfer(_loanId, _loanTerms, _borrower, _lender); } /** * @dev Transfer principal from lender to the borrower and * registers the new loan through the loan coordinator. * * @param _loanTerms - Struct containing the loan's settings * @param _lender - The address of the lender. * that there is no referrer. */ function _createLoanNoNftTransfer(bytes32 _loanId, LoanTerms memory _loanTerms, address _borrower, address _lender) internal { _escrowTokens[_loanTerms.nftCollateralContract][_loanTerms.nftCollateralId] += 1; // Transfer principal from lender to borrower. if (_loanTerms.useLendingPool) { ILendingPool(_loanTerms.lender).informDisburse(_loanTerms.erc20Denomination, _borrower, _loanTerms.principalAmount); } else { IERC20(_loanTerms.erc20Denomination).safeTransferFrom(_lender, _borrower, _loanTerms.principalAmount); } // Add the loan to storage before moving collateral/principal to follow // the Checks-Effects-Interactions pattern. loanIdToLoan[_loanId] = _loanTerms; } /** * @dev Transfers several types of NFTs using a wrapper that knows how to handle each case. * * @param _loanTerms - Struct containing all the loan's parameters * @param _sender - Current owner of the NFT * @param _recipient - Recipient of the transfer */ function _transferNFT(LoanTerms memory _loanTerms, address _sender, address _recipient) internal { IERC721(_loanTerms.nftCollateralContract).safeTransferFrom(_sender, _recipient, _loanTerms.nftCollateralId, ""); } /** * @notice This function is called by a anyone to repay a loan. It can be called at any time after the loan has * begun and before loan expiry.. The caller will pay a pro-rata portion of their interest if the loan is paid off * early and the loan is pro-rated type, but the complete repayment amount if it is fixed type. * The the borrower (current owner of the obligation note) will get the collaterl NFT back. * * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause the * contract and hold hostage the NFT's that are still within it. * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. * * emit {LoanRepaid} event */ function _payBackLoan(bytes32 _loanId, address _borrower, address _lender, LoanTerms memory _loan) internal { (uint256 adminFee, uint256 payoffAmount) = _payoffAndFee(_loan); // Transfer principal-plus-interest-minus-fees from the caller to lender IERC20(_loan.erc20Denomination).safeTransferFrom(msg.sender, _lender, payoffAmount); if (_loan.useLendingPool) { ILendingPool(_lender).informPayBack(_loan.erc20Denomination, _loan.principalAmount); } // Transfer fees from the caller to admins IERC20(_loan.erc20Denomination).safeTransferFrom(msg.sender, owner(), adminFee); // Emit an event with all relevant details from this transaction. emit LoanRepaid( _loanId, _borrower, _lender, _loan.principalAmount, _loan.nftCollateralId, payoffAmount, adminFee, payoffAmount - _loan.principalAmount, _loan.nftCollateralContract, _loan.erc20Denomination ); } /** * @notice A convenience function with shared functionality between `payBackLoan` and `liquidateOverdueLoan`. * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param _nftReceiver - The receiver of the collateral nft. The borrower when `payBackLoan` or the lender when * `liquidateOverdueLoan`. * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan. */ function _resolveLoan(bytes32 _loanId, address _nftReceiver, LoanTerms memory _loanTerms) internal { _resolveLoanNoNftTransfer(_loanId, _loanTerms); // Transfer collateral from this contract to the lender, since the lender is seizing collateral for an overdue // loan _transferNFT(_loanTerms, address(this), _nftReceiver); } /** * @notice Resolving the loan without trasferring the nft to provide a base for the bundle * break up of the bundled loans * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan. */ function _resolveLoanNoNftTransfer(bytes32 _loanId, LoanTerms memory _loanTerms) internal { // Mark loan as liquidated before doing any external transfers to follow the Checks-Effects-Interactions design // pattern loanRepaidOrLiquidated[_loanId] = true; _escrowTokens[_loanTerms.nftCollateralContract][_loanTerms.nftCollateralId] -= 1; } /** * @notice This function can be called by admins to change the permitted status of an ERC20 currency. This includes * both adding an ERC20 currency to the permitted list and removing it. * * @param _erc20 - The address of the ERC20 currency whose permit list status changed. * @param _permit - The new status of whether the currency is permitted or not. * * emit {ERC20Permit} event */ function _setERC20Permit(address _erc20, bool _permit) internal { require(_erc20 != address(0), "erc20 is zero address"); erc20Permits[_erc20] = _permit; emit ERC20Permit(_erc20, _permit); } /** * @dev Performs some validation checks over loan parameters * */ function _loanSanityChecks(Offer memory _offer) internal view { require(getERC20Permit(_offer.erc20Denomination), "Currency denomination is not permitted"); require(nftPermits[_offer.nftCollateralContract], "NFT collateral contract is not permitted"); require(uint256(_offer.duration) <= maximumLoanDuration, "Loan duration exceeds maximum loan duration"); require(uint256(_offer.duration) != 0, "Loan duration cannot be zero"); require(_offer.adminFeeInBasisPoints == adminFeeInBasisPoints, "The admin fee has changed since this order was signed."); } /** * @dev reads some variable values of a loan for payback functions, created to reduce code repetition */ function _getPartiesAndData(bytes32 _loanId) internal view returns (address borrower, address lender, LoanTerms memory loan) { // Fetch loan details from storage, but store them in memory for the sake of saving gas. loan = loanIdToLoan[_loanId]; borrower = loan.borrower; lender = loan.lender; } /** * @dev Calculates the payoff amount and admin fee */ function _payoffAndFee(LoanTerms memory _loanTerms) internal view virtual returns (uint256, uint256); /** * @dev Check valid loan ID */ function isValidLoanId(bytes32 _loanId) public view returns (bool) { return loanIdToLoan[_loanId].borrower != address(0); } }
File 43 of 59: contracts/loans/utils/NFTfiSigningUtilsContract.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {NFTfiSigningUtils, LoanData} from "./NFTfiSigningUtils.sol"; /** * @title NFTfiSigningUtilsContract * @notice Helper contract for Loan. This contract manages externally verifying signatures from off-chain Loan orders. */ contract NFTfiSigningUtilsContract { /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @notice This function is when the borrower accepts a lender's offer, to validate the lender's signature that the * lender provided off-chain to verify that it did indeed made such offer. * * @param _offer - The offer struct containing: * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.erc20Denomination * - offer.principalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.duration * - offer.adminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - loan contract address, * - chainId * @param _loanContract - Address of the loan contract where the signature is going to be used */ function isValidLenderSignature( LoanData.Offer memory _offer, LoanData.Signature memory _signature, address _loanContract ) external view returns (bool) { return NFTfiSigningUtils.isValidLenderSignature(_offer, _signature, _loanContract); } /** * @notice This function is called in renegotiateLoan() to validate the lender's signature that the lender provided * off-chain to verify that they did indeed want to agree to this loan renegotiation according to these terms. * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _loan The current loan data * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * - expiry - The date when the renegotiation offer expires * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _lenderNonce * - _expiry * - loan contract address, * - chainId * @param _loanContract - Address of the loan contract where the signature is going to be used */ function isValidLenderRenegotiationSignature( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, LoanData.LoanTerms memory _loan, LoanData.Signature memory _signature, address _loanContract ) external view returns (bool) { return NFTfiSigningUtils.isValidLenderRenegotiationSignature( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, _loan, _signature, _loanContract ); } }
File 44 of 59: @openzeppelin/contracts/utils/Pausable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { bool private _paused; /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
File 45 of 59: @openzeppelin/contracts/token/ERC20/ERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance < type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
File 46 of 59: contracts/utils/TransferHelper.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.28; library TransferHelper { error TransferNativeFailed(); /// @notice Transfers Native token to the recipient address /// @dev Fails with error `TransferNativeFailed` /// @param to The destination of the transfer /// @param value The value to be transferred function safeTransferNative(address to, uint256 value) internal { (bool success, ) = to.call{value: value}(new bytes(0)); if (!success) { revert TransferNativeFailed(); } } }
File 47 of 59: @openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/utils/ERC721Holder.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; /** * @dev Implementation of the {IERC721Receiver} interface. * * Accepts all token transfers. * Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or * {IERC721-setApprovalForAll}. */ abstract contract ERC721Holder is IERC721Receiver { /** * @dev See {IERC721Receiver-onERC721Received}. * * Always returns `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) { return this.onERC721Received.selector; } }
File 48 of 59: @openzeppelin/contracts/utils/structs/EnumerableSet.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; assembly ("memory-safe") { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly ("memory-safe") { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly ("memory-safe") { result := store } return result; } }
File 49 of 59: contracts/Marketplace/Marketplace.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol"; import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {TransferHelper} from "../utils/TransferHelper.sol"; import {Permission, Ownable} from "../utils/Permission.sol"; import {IMarketplace} from "./IMarketplace.sol"; contract Marketplace is IMarketplace, Permission, ReentrancyGuard, ERC721Holder { using SafeERC20 for IERC20; address public feeReceiver; uint256 public feePercent; uint256 public itemCount; // Permitted payments token for marketplace mapping(address => bool) public paymentToken; struct Item { uint256 itemId; address nft; uint256 tokenId; uint256 price; address paymentToken; address seller; address beneficiary; ItemStatus status; } // Market item info mapped by item id mapping(uint256 => Item) public items; event MakeItem(uint256 indexed itemId, Item item); event BoughtItem(uint256 indexed itemId, address indexed buyer); event ClosedItem(uint256 indexed itemId); event SetPaymentToken(address indexed token, bool allow); event SetFeeReceiver(address indexed oldValue, address indexed newValue); event SetFeePercent(uint256 indexed oldValue, uint256 indexed newValue); constructor(address _initialOwner, address _feeReceiver, uint256 _feePercent) Ownable(_initialOwner) { feeReceiver = _feeReceiver; feePercent = _feePercent; } function makeItem(address _nft, uint256 _tokenId, address _paymentToken, uint256 _price, address _beneficiary) external { if (_nft == address(0)) revert InvalidNft(); if (!paymentToken[_paymentToken]) revert NotPermittedToken(); if (_price == 0) revert InvalidPrice(); if (_beneficiary == address(0)) revert InvalidBeneficiary(); itemCount++; items[itemCount] = Item(itemCount, _nft, _tokenId, _price, _paymentToken, _msgSender(), _beneficiary, ItemStatus.OPENING); IERC721(_nft).transferFrom(_msgSender(), address(this), _tokenId); emit MakeItem(itemCount, items[itemCount]); } function purchaseItem(uint256 _itemId) external payable nonReentrant { Item storage item = items[_itemId]; if (item.itemId == 0) revert NotExistedItem(); if (item.status != ItemStatus.OPENING) revert NotOpeningItem(); item.status = ItemStatus.SOLD; // transfer sold token to beneficiary address uint256 marketFee = (item.price * feePercent) / 10000; uint256 receivedAmount = item.price - marketFee; if (item.paymentToken == address(0)) { if (msg.value != item.price) revert NotEnougnETH(); if (marketFee > 0) { TransferHelper.safeTransferNative(feeReceiver, marketFee); } TransferHelper.safeTransferNative(item.beneficiary, receivedAmount); } else { if (marketFee > 0) { IERC20(item.paymentToken).safeTransferFrom(_msgSender(), feeReceiver, marketFee); } IERC20(item.paymentToken).safeTransferFrom(_msgSender(), item.beneficiary, receivedAmount); } // transfer nft to buyer IERC721(item.nft).transferFrom(address(this), _msgSender(), item.tokenId); emit BoughtItem(item.itemId, _msgSender()); } function closeItem(uint256 _itemId) external { Item storage item = items[_itemId]; if (item.itemId == 0) revert NotExistedItem(); if (item.status != ItemStatus.OPENING) revert NotOpeningItem(); if (item.seller != _msgSender()) revert OnlyItemOwner(); item.status = ItemStatus.CLOSED; // transfer nft to buyer IERC721(item.nft).transferFrom(address(this), _msgSender(), item.tokenId); emit ClosedItem(_itemId); } function setPaymentToken(address _token, bool allow) external onlyAdmin { paymentToken[_token] = allow; emit SetPaymentToken(_token, allow); } function setFeeReceiver(address _feeReceiver) external onlyAdmin { if (_feeReceiver == address(0)) revert InvalidFeeReceiver(); address oldValue = feeReceiver; feeReceiver = _feeReceiver; emit SetFeeReceiver(oldValue, _feeReceiver); } function setFeePercent(uint256 _newValue) external onlyAdmin { if (_newValue > 10000) revert InvalidFeePercent(); uint256 oldValue = feePercent; feePercent = _newValue; emit SetFeePercent(oldValue, _newValue); } }
File 50 of 59: contracts/LendingPool/interfaces/ILendingPool.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /** * @title Lending Pool Interface * */ interface ILendingPool { function informDisburse(address _token, address _to, uint256 _amount) external; function informPayBack(address _token, uint256 _principal) external; function approveToPayRewards(address _token, uint256 _amount) external; function isAdmin(address _account) external view returns (bool); function owner() external view returns (address); }
File 51 of 59: @openzeppelin/contracts/utils/Create2.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev There's no code to deploy. */ error Create2EmptyBytecode(); /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } if (bytecode.length == 0) { revert Create2EmptyBytecode(); } assembly ("memory-safe") { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) // if no address was created, and returndata is not empty, bubble revert if and(iszero(addr), not(iszero(returndatasize()))) { let p := mload(0x40) returndatacopy(p, 0, returndatasize()) revert(p, returndatasize()) } } if (addr == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) { assembly ("memory-safe") { let ptr := mload(0x40) // Get free memory pointer // | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... | // |-------------------|---------------------------------------------------------------------------| // | bytecodeHash | CCCCCCCCCCCCC...CC | // | salt | BBBBBBBBBBBBB...BB | // | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA | // | 0xFF | FF | // |-------------------|---------------------------------------------------------------------------| // | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC | // | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | mstore(add(ptr, 0x40), bytecodeHash) mstore(add(ptr, 0x20), salt) mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff mstore8(start, 0xff) addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff) } } }
File 52 of 59: @openzeppelin/contracts/utils/Errors.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
File 53 of 59: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
File 54 of 59: contracts/loans/direct/LoanChecksAndCalculations.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {IDirectLoanBase} from "./IDirectLoanBase.sol"; import {LoanData} from "./LoanData.sol"; /** * @title LoanChecksAndCalculations * @notice Helper library for LoanBase */ library LoanChecksAndCalculations { /* ******* */ /* STORAGE */ /* ******* */ uint16 private constant HUNDRED_PERCENT = 10000; /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @notice Function that performs some validation checks before trying to repay a loan * @dev Everyone can call * @param _loanId - The id of the loan being repaid */ function payBackChecks(bytes32 _loanId) external view { // Sanity check that payBackLoan() and liquidateOverdueLoan() have never been called on this loanId. // Depending on how the rest of the code turns out, this check may be unnecessary. checkLoanIdValidity(_loanId); // Fetch loan details from storage, but store them in memory for the sake of saving gas. (, , , , uint32 duration, , uint64 loanStartTime, , , , ) = IDirectLoanBase(address(this)).loanIdToLoan( _loanId ); // When a loan exceeds the loan term, it is expired. At this stage the Lender can call Liquidate Loan to resolve // the loan. require(block.timestamp <= (uint256(loanStartTime) + uint256(duration)), "Loan is expired"); } /** * @notice check loan's id is valid or not * @dev Everyone can call * @param _loanId Id of loan */ function checkLoanIdValidity(bytes32 _loanId) public view { require(!IDirectLoanBase(address(this)).loanRepaidOrLiquidated(_loanId), "Loan already repaid/liquidated"); require(IDirectLoanBase(address(this)).isValidLoanId(_loanId), "None existed loan ID"); } /** * @dev Performs some validation checks before trying to renegotiate a loan. * Needed to avoid stack too deep. * * @param _loan - The main Loan Terms struct. * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _lenderNonce - The nonce referred to here is not the same as an Ethereum account's nonce. We are * referring instead to nonces that are used by both the lender and the borrower when they are first signing * off-chain Loan orders. These nonces can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * @return Borrower and Lender addresses */ function renegotiationChecks( LoanData.LoanTerms memory _loan, bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _lenderNonce ) external view returns (address, address) { checkLoanIdValidity(_loanId); require(msg.sender == _loan.borrower, "Only borrower can initiate"); require(block.timestamp <= (uint256(_loan.loanStartTime) + _newLoanDuration), "New duration already expired"); require( uint256(_newLoanDuration) <= IDirectLoanBase(address(this)).maximumLoanDuration(), "New duration exceeds maximum loan duration" ); require(_newMaximumRepaymentAmount >= _loan.principalAmount, "Negative interest rate loans are not allowed"); require( !IDirectLoanBase(address(this)).getWhetherNonceHasBeenUsedForUser(_loan.lender, _lenderNonce), "Lender nonce invalid" ); return (_loan.borrower, _loan.lender); } /** * @notice A convenience function computing the adminFee taken from a specified quantity of interest. * * @param _interestDue - The amount of interest due, measured in the smallest quantity of the ERC20 currency being * used to pay the interest. * @param _adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be taken * as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * * @return The quantity of ERC20 currency (measured in smalled units of that ERC20 currency) that is due as an admin * fee. */ function computeAdminFee(uint256 _interestDue, uint256 _adminFeeInBasisPoints) external pure returns (uint256) { return (_interestDue * _adminFeeInBasisPoints) / HUNDRED_PERCENT; } }
File 55 of 59: contracts/TokenBoundAccount/interfaces/ITokenBoundAccountRegistry.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; interface ITokenBoundAccountRegistry { event AccountCreated( address account, address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 salt ); function createAccount( address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 seed ) external returns (address); function account( address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 salt ) external view returns (address); }
File 56 of 59: @openzeppelin/contracts/interfaces/IERC1271.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
File 57 of 59: @openzeppelin/contracts/access/Ownable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
File 58 of 59: contracts/loans/direct/IDirectLoanBase.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; interface IDirectLoanBase { function maximumLoanDuration() external view returns (uint256); function adminFeeInBasisPoints() external view returns (uint16); function loanIdToLoan( bytes32 ) external view returns ( uint256, uint256, uint256, address, uint32, uint16, uint64, address, address, address, bool ); function loanRepaidOrLiquidated(bytes32) external view returns (bool); function getWhetherNonceHasBeenUsedForUser(address _user, uint256 _nonce) external view returns (bool); function isValidLoanId(bytes32 _loanId) external view returns (bool); }
File 59 of 59: @openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
编译器设置
{"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":true},"libraries":{},"evmVersion":"paris"}
合同 ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"string","name":"_baseURI","internalType":"string"}]},{"type":"error","name":"ERC721IncorrectOwner","inputs":[{"type":"address","name":"sender","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"},{"type":"address","name":"owner","internalType":"address"}]},{"type":"error","name":"ERC721InsufficientApproval","inputs":[{"type":"address","name":"operator","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"error","name":"ERC721InvalidApprover","inputs":[{"type":"address","name":"approver","internalType":"address"}]},{"type":"error","name":"ERC721InvalidOperator","inputs":[{"type":"address","name":"operator","internalType":"address"}]},{"type":"error","name":"ERC721InvalidOwner","inputs":[{"type":"address","name":"owner","internalType":"address"}]},{"type":"error","name":"ERC721InvalidReceiver","inputs":[{"type":"address","name":"receiver","internalType":"address"}]},{"type":"error","name":"ERC721InvalidSender","inputs":[{"type":"address","name":"sender","internalType":"address"}]},{"type":"error","name":"ERC721NonexistentToken","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"event","name":"Approval","inputs":[{"type":"address","name":"owner","internalType":"address","indexed":true},{"type":"address","name":"approved","internalType":"address","indexed":true},{"type":"uint256","name":"tokenId","internalType":"uint256","indexed":true}],"anonymous":false},{"type":"event","name":"ApprovalForAll","inputs":[{"type":"address","name":"owner","internalType":"address","indexed":true},{"type":"address","name":"operator","internalType":"address","indexed":true},{"type":"bool","name":"approved","internalType":"bool","indexed":false}],"anonymous":false},{"type":"event","name":"BatchMetadataUpdate","inputs":[{"type":"uint256","name":"_fromTokenId","internalType":"uint256","indexed":false},{"type":"uint256","name":"_toTokenId","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"MetadataUpdate","inputs":[{"type":"uint256","name":"_tokenId","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"Transfer","inputs":[{"type":"address","name":"from","internalType":"address","indexed":true},{"type":"address","name":"to","internalType":"address","indexed":true},{"type":"uint256","name":"tokenId","internalType":"uint256","indexed":true}],"anonymous":false},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"approve","inputs":[{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"balanceOf","inputs":[{"type":"address","name":"owner","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"baseExtension","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"baseURI","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"getApproved","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"isApprovedForAll","inputs":[{"type":"address","name":"owner","internalType":"address"},{"type":"address","name":"operator","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"mint","inputs":[{"type":"address","name":"_to","internalType":"address"},{"type":"uint256","name":"_amount","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"name","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"ownerOf","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"safeTransferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"safeTransferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"},{"type":"bytes","name":"data","internalType":"bytes"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setApprovalForAll","inputs":[{"type":"address","name":"operator","internalType":"address"},{"type":"bool","name":"approved","internalType":"bool"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"supportsInterface","inputs":[{"type":"bytes4","name":"interfaceId","internalType":"bytes4"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"symbol","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"uint256","name":"","internalType":"uint256"}],"name":"tokenIds","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"string","name":"","internalType":"string"}],"name":"tokenURI","inputs":[{"type":"uint256","name":"tokenId","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferFrom","inputs":[{"type":"address","name":"from","internalType":"address"},{"type":"address","name":"to","internalType":"address"},{"type":"uint256","name":"tokenId","internalType":"uint256"}]}]
合同创建代码
0x60a060405260006080908152600890610018908261015b565b5034801561002557600080fd5b5060405161149038038061149083398101604081905261004491610219565b6040518060400160405280600d81526020016c43686f6e6b20536f636965747960981b8152506040518060400160405280600581526020016443484f4e4b60d81b8152508160009081610097919061015b565b5060016100a4828261015b565b50600891506100b59050828261015b565b50506102e5565b634e487b7160e01b600052604160045260246000fd5b600181811c908216806100e657607f821691505b60208210810361010657634e487b7160e01b600052602260045260246000fd5b50919050565b601f82111561015657806000526020600020601f840160051c810160208510156101335750805b601f840160051c820191505b81811015610153576000815560010161013f565b50505b505050565b81516001600160401b03811115610174576101746100bc565b6101888161018284546100d2565b8461010c565b6020601f8211600181146101bc57600083156101a45750848201515b600019600385901b1c1916600184901b178455610153565b600084815260208120601f198516915b828110156101ec57878501518255602094850194600190920191016101cc565b508482101561020a5786840151600019600387901b60f8161c191681555b50505050600190811b01905550565b60006020828403121561022b57600080fd5b81516001600160401b0381111561024157600080fd5b8201601f8101841361025257600080fd5b80516001600160401b0381111561026b5761026b6100bc565b604051601f8201601f19908116603f011681016001600160401b0381118282101715610299576102996100bc565b6040528181528282016020018610156102b157600080fd5b60005b828110156102d0576020818501810151838301820152016102b4565b50600091810160200191909152949350505050565b61119c806102f46000396000f3fe608060405234801561001057600080fd5b506004361061010b5760003560e01c80636c0360eb116100a2578063a22cb46511610071578063a22cb46514610213578063b88d4fde14610226578063c668286214610239578063c87b56dd1461025d578063e985e9c51461027057600080fd5b80636c0360eb146101d957806370a08231146101e1578063714cff561461020257806395d89b411461020b57600080fd5b806323b872dd116100de57806323b872dd1461018d57806340c10f19146101a057806342842e0e146101b35780636352211e146101c657600080fd5b806301ffc9a71461011057806306fdde0314610138578063081812fc1461014d578063095ea7b314610178575b600080fd5b61012361011e366004610d3e565b610283565b60405190151581526020015b60405180910390f35b6101406102ae565b60405161012f9190610db2565b61016061015b366004610dc5565b610340565b6040516001600160a01b03909116815260200161012f565b61018b610186366004610dfa565b610369565b005b61018b61019b366004610e24565b610378565b61018b6101ae366004610dfa565b610408565b61018b6101c1366004610e24565b610441565b6101606101d4366004610dc5565b61045c565b610140610467565b6101f46101ef366004610e61565b6104f5565b60405190815260200161012f565b6101f460075481565b61014061053d565b61018b610221366004610e7c565b61054c565b61018b610234366004610ece565b610557565b61014060405180604001604052806005815260200164173539b7b760d91b81525081565b61014061026b366004610dc5565b61056f565b61012361027e366004610fb2565b6105cc565b60006001600160e01b03198216632483248360e11b14806102a857506102a8826105fa565b92915050565b6060600080546102bd90610fe5565b80601f01602080910402602001604051908101604052809291908181526020018280546102e990610fe5565b80156103365780601f1061030b57610100808354040283529160200191610336565b820191906000526020600020905b81548152906001019060200180831161031957829003601f168201915b5050505050905090565b600061034b8261064a565b506000828152600460205260409020546001600160a01b03166102a8565b610374828233610683565b5050565b6001600160a01b0382166103a757604051633250574960e11b8152600060048201526024015b60405180910390fd5b60006103b4838333610690565b9050836001600160a01b0316816001600160a01b031614610402576040516364283d7b60e01b81526001600160a01b038086166004830152602482018490528216604482015260640161039e565b50505050565b60005b8181101561043c57600780549060006104238361101f565b919050555061043483600754610789565b60010161040b565b505050565b61043c83838360405180602001604052806000815250610557565b60006102a88261064a565b6008805461047490610fe5565b80601f01602080910402602001604051908101604052809291908181526020018280546104a090610fe5565b80156104ed5780601f106104c2576101008083540402835291602001916104ed565b820191906000526020600020905b8154815290600101906020018083116104d057829003601f168201915b505050505081565b60006001600160a01b038216610521576040516322718ad960e21b81526000600482015260240161039e565b506001600160a01b031660009081526003602052604090205490565b6060600180546102bd90610fe5565b6103743383836107a3565b610562848484610378565b6104023385858585610842565b606061057a8261064a565b5060086105868361096d565b60405180604001604052806005815260200164173539b7b760d91b8152506040516020016105b693929190611062565b6040516020818303038152906040529050919050565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b60006001600160e01b031982166380ac58cd60e01b148061062b57506001600160e01b03198216635b5e139f60e01b145b806102a857506301ffc9a760e01b6001600160e01b03198316146102a8565b6000818152600260205260408120546001600160a01b0316806102a857604051637e27328960e01b81526004810184905260240161039e565b61043c8383836001610a00565b6000828152600260205260408120546001600160a01b03908116908316156106bd576106bd818486610b06565b6001600160a01b038116156106fb576106da600085600080610a00565b6001600160a01b038116600090815260036020526040902080546000190190555b6001600160a01b0385161561072a576001600160a01b0385166000908152600360205260409020805460010190555b60008481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b610374828260405180602001604052806000815250610b6a565b6001600160a01b0382166107d557604051630b61174360e31b81526001600160a01b038316600482015260240161039e565b6001600160a01b03838116600081815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6001600160a01b0383163b1561096657604051630a85bd0160e11b81526001600160a01b0384169063150b7a0290610884908890889087908790600401611116565b6020604051808303816000875af19250505080156108bf575060408051601f3d908101601f191682019092526108bc91810190611149565b60015b610928573d8080156108ed576040519150601f19603f3d011682016040523d82523d6000602084013e6108f2565b606091505b50805160000361092057604051633250574960e11b81526001600160a01b038516600482015260240161039e565b805181602001fd5b6001600160e01b03198116630a85bd0160e11b1461096457604051633250574960e11b81526001600160a01b038516600482015260240161039e565b505b5050505050565b6060600061097a83610b82565b600101905060008167ffffffffffffffff81111561099a5761099a610eb8565b6040519080825280601f01601f1916602001820160405280156109c4576020820181803683370190505b5090508181016020015b600019016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846109ce57509392505050565b8080610a1457506001600160a01b03821615155b15610ad6576000610a248461064a565b90506001600160a01b03831615801590610a505750826001600160a01b0316816001600160a01b031614155b8015610a635750610a6181846105cc565b155b15610a8c5760405163a9fbf51f60e01b81526001600160a01b038416600482015260240161039e565b8115610ad45783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b5050600090815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b610b11838383610c5a565b61043c576001600160a01b038316610b3f57604051637e27328960e01b81526004810182905260240161039e565b60405163177e802f60e01b81526001600160a01b03831660048201526024810182905260440161039e565b610b748383610cc0565b61043c336000858585610842565b60008072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310610bc15772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310610bed576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310610c0b57662386f26fc10000830492506010015b6305f5e1008310610c23576305f5e100830492506008015b6127108310610c3757612710830492506004015b60648310610c49576064830492506002015b600a83106102a85760010192915050565b60006001600160a01b03831615801590610cb85750826001600160a01b0316846001600160a01b03161480610c945750610c9484846105cc565b80610cb857506000828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b038216610cea57604051633250574960e11b81526000600482015260240161039e565b6000610cf883836000610690565b90506001600160a01b0381161561043c576040516339e3563760e11b81526000600482015260240161039e565b6001600160e01b031981168114610d3b57600080fd5b50565b600060208284031215610d5057600080fd5b8135610d5b81610d25565b9392505050565b60005b83811015610d7d578181015183820152602001610d65565b50506000910152565b60008151808452610d9e816020860160208601610d62565b601f01601f19169290920160200192915050565b602081526000610d5b6020830184610d86565b600060208284031215610dd757600080fd5b5035919050565b80356001600160a01b0381168114610df557600080fd5b919050565b60008060408385031215610e0d57600080fd5b610e1683610dde565b946020939093013593505050565b600080600060608486031215610e3957600080fd5b610e4284610dde565b9250610e5060208501610dde565b929592945050506040919091013590565b600060208284031215610e7357600080fd5b610d5b82610dde565b60008060408385031215610e8f57600080fd5b610e9883610dde565b915060208301358015158114610ead57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b60008060008060808587031215610ee457600080fd5b610eed85610dde565b9350610efb60208601610dde565b925060408501359150606085013567ffffffffffffffff811115610f1e57600080fd5b8501601f81018713610f2f57600080fd5b803567ffffffffffffffff811115610f4957610f49610eb8565b604051601f8201601f19908116603f0116810167ffffffffffffffff81118282101715610f7857610f78610eb8565b604052818152828201602001891015610f9057600080fd5b8160208401602083013760006020838301015280935050505092959194509250565b60008060408385031215610fc557600080fd5b610fce83610dde565b9150610fdc60208401610dde565b90509250929050565b600181811c90821680610ff957607f821691505b60208210810361101957634e487b7160e01b600052602260045260246000fd5b50919050565b60006001820161103f57634e487b7160e01b600052601160045260246000fd5b5060010190565b60008151611058818560208601610d62565b9290920192915050565b6000808554818160011c9050600182168061107e57607f821691505b60208210810361109c57634e487b7160e01b84526022600452602484fd5b8080156110b057600181146110c5576110f5565b60ff19841687528215158302870194506110f5565b60008a81526020902060005b848110156110ed578154898201526001909101906020016110d1565b505082870194505b5050505061110c6111068287611046565b85611046565b9695505050505050565b6001600160a01b038581168252841660208201526040810183905260806060820181905260009061110c90830184610d86565b60006020828403121561115b57600080fd5b8151610d5b81610d2556fea2646970667358221220f9584514a0621ee813b83ccec2ad2f4fefb2c1b0fc9e90144dfd46c40b1cb25664736f6c634300081c0033000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000087465737420757269000000000000000000000000000000000000000000000000
部署字节码
0x608060405234801561001057600080fd5b506004361061010b5760003560e01c80636c0360eb116100a2578063a22cb46511610071578063a22cb46514610213578063b88d4fde14610226578063c668286214610239578063c87b56dd1461025d578063e985e9c51461027057600080fd5b80636c0360eb146101d957806370a08231146101e1578063714cff561461020257806395d89b411461020b57600080fd5b806323b872dd116100de57806323b872dd1461018d57806340c10f19146101a057806342842e0e146101b35780636352211e146101c657600080fd5b806301ffc9a71461011057806306fdde0314610138578063081812fc1461014d578063095ea7b314610178575b600080fd5b61012361011e366004610d3e565b610283565b60405190151581526020015b60405180910390f35b6101406102ae565b60405161012f9190610db2565b61016061015b366004610dc5565b610340565b6040516001600160a01b03909116815260200161012f565b61018b610186366004610dfa565b610369565b005b61018b61019b366004610e24565b610378565b61018b6101ae366004610dfa565b610408565b61018b6101c1366004610e24565b610441565b6101606101d4366004610dc5565b61045c565b610140610467565b6101f46101ef366004610e61565b6104f5565b60405190815260200161012f565b6101f460075481565b61014061053d565b61018b610221366004610e7c565b61054c565b61018b610234366004610ece565b610557565b61014060405180604001604052806005815260200164173539b7b760d91b81525081565b61014061026b366004610dc5565b61056f565b61012361027e366004610fb2565b6105cc565b60006001600160e01b03198216632483248360e11b14806102a857506102a8826105fa565b92915050565b6060600080546102bd90610fe5565b80601f01602080910402602001604051908101604052809291908181526020018280546102e990610fe5565b80156103365780601f1061030b57610100808354040283529160200191610336565b820191906000526020600020905b81548152906001019060200180831161031957829003601f168201915b5050505050905090565b600061034b8261064a565b506000828152600460205260409020546001600160a01b03166102a8565b610374828233610683565b5050565b6001600160a01b0382166103a757604051633250574960e11b8152600060048201526024015b60405180910390fd5b60006103b4838333610690565b9050836001600160a01b0316816001600160a01b031614610402576040516364283d7b60e01b81526001600160a01b038086166004830152602482018490528216604482015260640161039e565b50505050565b60005b8181101561043c57600780549060006104238361101f565b919050555061043483600754610789565b60010161040b565b505050565b61043c83838360405180602001604052806000815250610557565b60006102a88261064a565b6008805461047490610fe5565b80601f01602080910402602001604051908101604052809291908181526020018280546104a090610fe5565b80156104ed5780601f106104c2576101008083540402835291602001916104ed565b820191906000526020600020905b8154815290600101906020018083116104d057829003601f168201915b505050505081565b60006001600160a01b038216610521576040516322718ad960e21b81526000600482015260240161039e565b506001600160a01b031660009081526003602052604090205490565b6060600180546102bd90610fe5565b6103743383836107a3565b610562848484610378565b6104023385858585610842565b606061057a8261064a565b5060086105868361096d565b60405180604001604052806005815260200164173539b7b760d91b8152506040516020016105b693929190611062565b6040516020818303038152906040529050919050565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b60006001600160e01b031982166380ac58cd60e01b148061062b57506001600160e01b03198216635b5e139f60e01b145b806102a857506301ffc9a760e01b6001600160e01b03198316146102a8565b6000818152600260205260408120546001600160a01b0316806102a857604051637e27328960e01b81526004810184905260240161039e565b61043c8383836001610a00565b6000828152600260205260408120546001600160a01b03908116908316156106bd576106bd818486610b06565b6001600160a01b038116156106fb576106da600085600080610a00565b6001600160a01b038116600090815260036020526040902080546000190190555b6001600160a01b0385161561072a576001600160a01b0385166000908152600360205260409020805460010190555b60008481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b610374828260405180602001604052806000815250610b6a565b6001600160a01b0382166107d557604051630b61174360e31b81526001600160a01b038316600482015260240161039e565b6001600160a01b03838116600081815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6001600160a01b0383163b1561096657604051630a85bd0160e11b81526001600160a01b0384169063150b7a0290610884908890889087908790600401611116565b6020604051808303816000875af19250505080156108bf575060408051601f3d908101601f191682019092526108bc91810190611149565b60015b610928573d8080156108ed576040519150601f19603f3d011682016040523d82523d6000602084013e6108f2565b606091505b50805160000361092057604051633250574960e11b81526001600160a01b038516600482015260240161039e565b805181602001fd5b6001600160e01b03198116630a85bd0160e11b1461096457604051633250574960e11b81526001600160a01b038516600482015260240161039e565b505b5050505050565b6060600061097a83610b82565b600101905060008167ffffffffffffffff81111561099a5761099a610eb8565b6040519080825280601f01601f1916602001820160405280156109c4576020820181803683370190505b5090508181016020015b600019016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a85049450846109ce57509392505050565b8080610a1457506001600160a01b03821615155b15610ad6576000610a248461064a565b90506001600160a01b03831615801590610a505750826001600160a01b0316816001600160a01b031614155b8015610a635750610a6181846105cc565b155b15610a8c5760405163a9fbf51f60e01b81526001600160a01b038416600482015260240161039e565b8115610ad45783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b5050600090815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b610b11838383610c5a565b61043c576001600160a01b038316610b3f57604051637e27328960e01b81526004810182905260240161039e565b60405163177e802f60e01b81526001600160a01b03831660048201526024810182905260440161039e565b610b748383610cc0565b61043c336000858585610842565b60008072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310610bc15772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310610bed576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310610c0b57662386f26fc10000830492506010015b6305f5e1008310610c23576305f5e100830492506008015b6127108310610c3757612710830492506004015b60648310610c49576064830492506002015b600a83106102a85760010192915050565b60006001600160a01b03831615801590610cb85750826001600160a01b0316846001600160a01b03161480610c945750610c9484846105cc565b80610cb857506000828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b038216610cea57604051633250574960e11b81526000600482015260240161039e565b6000610cf883836000610690565b90506001600160a01b0381161561043c576040516339e3563760e11b81526000600482015260240161039e565b6001600160e01b031981168114610d3b57600080fd5b50565b600060208284031215610d5057600080fd5b8135610d5b81610d25565b9392505050565b60005b83811015610d7d578181015183820152602001610d65565b50506000910152565b60008151808452610d9e816020860160208601610d62565b601f01601f19169290920160200192915050565b602081526000610d5b6020830184610d86565b600060208284031215610dd757600080fd5b5035919050565b80356001600160a01b0381168114610df557600080fd5b919050565b60008060408385031215610e0d57600080fd5b610e1683610dde565b946020939093013593505050565b600080600060608486031215610e3957600080fd5b610e4284610dde565b9250610e5060208501610dde565b929592945050506040919091013590565b600060208284031215610e7357600080fd5b610d5b82610dde565b60008060408385031215610e8f57600080fd5b610e9883610dde565b915060208301358015158114610ead57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b60008060008060808587031215610ee457600080fd5b610eed85610dde565b9350610efb60208601610dde565b925060408501359150606085013567ffffffffffffffff811115610f1e57600080fd5b8501601f81018713610f2f57600080fd5b803567ffffffffffffffff811115610f4957610f49610eb8565b604051601f8201601f19908116603f0116810167ffffffffffffffff81118282101715610f7857610f78610eb8565b604052818152828201602001891015610f9057600080fd5b8160208401602083013760006020838301015280935050505092959194509250565b60008060408385031215610fc557600080fd5b610fce83610dde565b9150610fdc60208401610dde565b90509250929050565b600181811c90821680610ff957607f821691505b60208210810361101957634e487b7160e01b600052602260045260246000fd5b50919050565b60006001820161103f57634e487b7160e01b600052601160045260246000fd5b5060010190565b60008151611058818560208601610d62565b9290920192915050565b6000808554818160011c9050600182168061107e57607f821691505b60208210810361109c57634e487b7160e01b84526022600452602484fd5b8080156110b057600181146110c5576110f5565b60ff19841687528215158302870194506110f5565b60008a81526020902060005b848110156110ed578154898201526001909101906020016110d1565b505082870194505b5050505061110c6111068287611046565b85611046565b9695505050505050565b6001600160a01b038581168252841660208201526040810183905260806060820181905260009061110c90830184610d86565b60006020828403121561115b57600080fd5b8151610d5b81610d2556fea2646970667358221220f9584514a0621ee813b83ccec2ad2f4fefb2c1b0fc9e90144dfd46c40b1cb25664736f6c634300081c0033