Sözleşme
0xdbA1AF28eB05570C25129c2bCad2d1Ab63d04380
Genel Bakış
XCR DENGE
0 XCR
XCR DEĞER
$--- (@ $---/XCR)
Daha Fazla Bilgi
SÖZLEŞME YARATICISI
Ebeveyn Txn Hash |
Yöntem
|
Blok | Yaş | Kimden | için | "%>Değer | |
---|---|---|---|---|---|---|---|
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH | ||
0xecf33c0f32a79068…
|
Deposit
|
10 secs ago | 0xbAFA44...559c1138 | Beacon Deposit Contract | 32 ETH |
|
İşlem Karması |
Yöntem
|
Blok | Yaş | Kimden | için | Değer | Txn Peri | |
---|---|---|---|---|---|---|---|---|---|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) | |
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | 30,000,000,000 | Catecoin (CATE) |
|
Transaction Hash |
Method
|
Blok | Yaş | Kimden | için | Tip | Öğe | |
---|---|---|---|---|---|---|---|---|---|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
|
|
0xecf33c0f32a79068…
|
Transfer
|
12 hrs 44 mins ago | Catecoin: Deployer 2 |
IN
|
Beacon Deposit Co... | ECR_721 |
Greeting Cards 2023 Limit
NFT: Greeting Cards 2023 Limited Ed
|
Contract Source Code Verified
(Exact Match)
ContractName:
DepositContract
Optimization Enabled:
Yes
with
5000000
runs
Compiler Version:
v0.6.11+commit.5ef660b1
Other Settings:
default
evmVersion,
Unlicense
license
Contract Security Audit
Contract ABI
Contract Creation Code
Deployed ByteCode Sourcemap
Swarm Source
ipfs://dceca8706b29e917dacf25fceef95acac8d90d765ac926663ce4096195952b61
Descriptions included below are taken from the contract source code NatSpec. CVCscan does not provide any guarantees on their safety or accuracy.
Txn Hash | Blok | Yaş | Yöntem |
|
---|---|---|---|---|
0xecf33c0f32a79068…
|
17453280 | 13 mins ago |
0x22895118
|
DepositEvent (bytes
pubkey,
bytes
withdrawal_credentials,
bytes
amount,
bytes
signature,
bytes
index)
[topic0] 0x649bbc62d0e31342afea4e5cd82d4049e7e1ee912fc0889aa790803be39038c5
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
|
0xecf33c0f32a79068…
|
17453280 | 13 mins ago |
0x22895118
|
DepositEvent (bytes
pubkey,
bytes
withdrawal_credentials,
bytes
amount,
bytes
signature,
bytes
index)
[topic0] 0x649bbc62d0e31342afea4e5cd82d4049e7e1ee912fc0889aa790803be39038c5
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
|
0xecf33c0f32a79068…
|
17453280 | 13 mins ago |
0x22895118
|
DepositEvent (bytes
pubkey,
bytes
withdrawal_credentials,
bytes
amount,
bytes
signature,
bytes
index)
[topic0] 0x649bbc62d0e31342afea4e5cd82d4049e7e1ee912fc0889aa790803be39038c5
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
Hex
Hex
Number
Text
Address
|
Block | Age | Transaction | Difficulty | Gas Used | Reward |
---|---|---|---|---|---|
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
0xecf33c0f32a79068…
|
34 days 21 hrs ago | 145 | 0.00 TH |
10,915,233 (36.38%)
|
0.026092595899657117 ETH |
QR Kodu
Uyarı! Sözleşme bayt kodu değiştirilmiştir ve doğrulanmış olanla eşleşmemektedir. Bu nedenle, bu akıllı sözleşme ile etkileşim riskli olabilir.
Bu sözleşme Sourcify aracılığıyla kısmen doğrulanmıştır.
- Sözleşme Adı:
- LendingPool
- Optimizasyon Etkin:
- gerçek
- Derleyici sürümü:
- v0.8.28+commit.7893614a
- Optimizasyon Çalışmaları:
- 200
- EVM versiyonu:
- paris
- Doğrulandı:
- 2025-03-10T06:39:16.249289Z
Kurucu Argümanları
0x0000000000000000000000002694f30c39585192c21e3873b1b71ccf7f741fe2
Arg [0] (address) : 0x2694f30c39585192c21e3873b1b71ccf7f741fe2
Dosya 1 . 59: contracts/LendingPool/LendingPool.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol"; import {Permission, Ownable} from "../utils/Permission.sol"; import {IMarketplace} from "../Marketplace/IMarketplace.sol"; import {ILendingStake} from "./interfaces/ILendingStake.sol"; /** * @title LendingPool * @dev A main management contract for lending pool. */ contract LendingPool is Permission, Pausable, ReentrancyGuard, ERC721Holder { using SafeERC20 for IERC20; address public loan; address public lendingStake; address public marketplace; event SetLoan(address indexed oldValue, address indexed newValue); event SetLendingStake(address indexed oldValue, address indexed newValue); event SetMarketplace(address indexed oldValue, address indexed newValue); event Disbursed(address indexed token, address indexed to, uint256 amount); event PaidBack(address indexed token, uint256 amount); event ListNftToMarket(address indexed nftContract, uint256 indexed nftTokenId, uint256 indexed price); constructor(address _initialOwner) Ownable(_initialOwner) {} /** * @dev called by the owner to set loan contract address */ function setLoan(address _loan) external onlyOwner { if (_loan == address(0)) revert InvalidAddress(); address _oldValue = loan; loan = _loan; emit SetLoan(_oldValue, loan); } /** * @dev called by the owner to set lending stake contract address */ function setLendingStake(address _lendingStake) external onlyOwner { if (_lendingStake == address(0)) revert InvalidAddress(); address _oldValue = lendingStake; lendingStake = _lendingStake; emit SetLendingStake(_oldValue, lendingStake); } /** * @dev called by the owner to set marketplace contract address */ function setMarketplace(address _marketplace) external onlyOwner { if (_marketplace == address(0)) revert InvalidAddress(); address _oldValue = marketplace; marketplace = _marketplace; emit SetMarketplace(_oldValue, marketplace); } /** * @dev called by loan contract to disburse token to borrower */ function informDisburse(address _token, address _to, uint256 _amount) external nonReentrant whenNotPaused permittedTo(loan) { ILendingStake(lendingStake).approve(_amount); IERC20(_token).safeTransferFrom(lendingStake, _to, _amount); emit Disbursed(_token, _to, _amount); } /** * @dev called by loan contract to pay back token to lending stake */ function informPayBack(address _token, uint256 _principal) external whenNotPaused permittedTo(loan) { IERC20(_token).safeTransfer(lendingStake, _principal); emit PaidBack(_token, _principal); } /** * @dev called by the owner to list NFT to marketplace */ function listNftToMarket(address _nftContract, uint256 _nftTokenId, uint256 _price) external whenNotPaused onlyAdmin { IERC721(_nftContract).approve(marketplace, _nftTokenId); IMarketplace(marketplace).makeItem(_nftContract, _nftTokenId, ILendingStake(lendingStake).wXENE(), _price, lendingStake); } /** * @dev called by the owner to withdraw NFT from marketplace */ function withdrawNftFromMarket(uint256 _marketItemId) external whenNotPaused onlyAdmin { IMarketplace(marketplace).closeItem(_marketItemId); } /** * @dev called by lending stake contract to approve token to pay rewards */ function approveToPayRewards(address _token, uint256 _amount) external whenNotPaused permittedTo(lendingStake) { IERC20(_token).approve(lendingStake, _amount); } /** * @dev called by the owner to rescue token from contract */ function rescueToken(address _token, address _to, uint256 _amount) external onlyOwner { if (_to == address(0)) revert InvalidAddress(); IERC20(_token).safeTransfer(_to, _amount); } /** * @dev called by the owner to rescue nft from contract */ function rescueNft(address _nftContract, uint256 _nftTokenId, address _to) external onlyOwner { if (_to == address(0)) revert InvalidAddress(); IERC721(_nftContract).transferFrom(address(this), _to, _nftTokenId); } /** * @dev called by the owner to pause, triggers stopped state */ function pause() external onlyOwner whenNotPaused { _pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() external onlyOwner whenPaused { _unpause(); } }
File 2 of 59: @openzeppelin/contracts/utils/Strings.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
File 3 of 59: contracts/loans/BaseLoan.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; /** * @title BaseLoan * @dev Implements base functionalities common to all Loan types. * Mostly related to governance and security. */ abstract contract BaseLoan is Ownable, Pausable, ReentrancyGuard { /* *********** */ /* CONSTRUCTOR */ /* *********** */ /** * @notice Sets the admin of the contract. * * @param _admin - Initial admin of this contract. */ constructor(address _admin) Ownable(_admin) { // solhint-disable-previous-line no-empty-blocks } /* ****************** */ /* EXTERNAL FUNCTIONS */ /* ****************** */ /** * @notice Triggers stopped state. * * @dev Only the owner can call this method. * The contract must not be paused. */ function pause() external onlyOwner { _pause(); } /** * @notice Returns to normal state. * * @dev Only the owner can call this method. * The contract must be paused. */ function unpause() external onlyOwner { _unpause(); } }
File 4 of 59: @openzeppelin/contracts/utils/Context.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
File 5 of 59: @openzeppelin/contracts/utils/cryptography/SignatureChecker.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.20; import {ECDSA} from "./ECDSA.sol"; import {IERC1271} from "../../interfaces/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC-1271 signatures from smart contract wallets like * Argent and Safe Wallet (previously Gnosis Safe). */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC-1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { if (signer.code.length == 0) { (address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(hash, signature); return err == ECDSA.RecoverError.NoError && recovered == signer; } else { return isValidERC1271SignatureNow(signer, hash, signature); } } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC-1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeCall(IERC1271.isValidSignature, (hash, signature)) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } }
File 6 of 59: @openzeppelin/contracts/interfaces/IERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
File 7 of 59: contracts/ChonkSociety.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import "@openzeppelin/contracts/utils/Strings.sol"; import "@openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol"; import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; contract ChonkSociety is ERC721URIStorage { using Strings for uint256; using EnumerableSet for EnumerableSet.UintSet; /* ******* */ /* STORAGE */ /* ******* */ /** * @notice base extension for metadata URI */ string public constant baseExtension = ".json"; /** * @notice Token Id */ uint256 public tokenIds; /** * @notice base URI for metadata */ string public baseURI = ""; /* *********** */ /* CONSTRUCTOR */ /* *********** */ /** * @notice null Constructor * @param _baseURI Base URI of NFT */ constructor(string memory _baseURI) ERC721("Chonk Society", "CHONK") { baseURI = _baseURI; } /* ****************** */ /* EXTERNAL FUNCTIONS */ /* ****************** */ /** * @notice Mint new NFT * @dev Everyone can call * @param _to Address will be received NFT * @param _amount Amount NFT that address will be received */ function mint(address _to, uint256 _amount) external { for (uint256 i = 0; i < _amount; i++) { tokenIds++; _safeMint(_to, tokenIds); } } /* ************* */ /* VIEW FUNCTIONS */ /* ************* */ /** * @notice Get token URI of a NFT * @dev Everyone can call * @param tokenId Id of NFT */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { _requireOwned(tokenId); return string(abi.encodePacked(baseURI, tokenId.toString(), baseExtension)); } }
File 8 of 59: @openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
File 9 of 59: contracts/TokenBoundAccount/TokenBoundAccountRegistry.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Create2} from "@openzeppelin/contracts/utils/Create2.sol"; import {ITokenBoundAccountRegistry} from "./interfaces/ITokenBoundAccountRegistry.sol"; import {TokenBoundAccountBytecodeLib} from "./libraries/TokenBoundAccountBytecodeLib.sol"; contract TokenBoundAccountRegistry is ITokenBoundAccountRegistry { error InitializationFailed(); function createAccount( address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 salt ) external returns (address) { bytes memory code = TokenBoundAccountBytecodeLib.getCreationCode( implementation, chainId, tokenContract, tokenId, salt ); address _account = Create2.computeAddress(bytes32(salt), keccak256(code)); if (_account.code.length != 0) return _account; emit AccountCreated(_account, implementation, chainId, tokenContract, tokenId, salt); _account = Create2.deploy(0, bytes32(salt), code); return _account; } function account( address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 salt ) external view returns (address) { bytes32 bytecodeHash = keccak256( TokenBoundAccountBytecodeLib.getCreationCode(implementation, chainId, tokenContract, tokenId, salt) ); return Create2.computeAddress(bytes32(salt), bytecodeHash); } }
File 10 of 59: contracts/LendingPool/interfaces/ILendingStake.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /** * @title Lending Stake Interface * */ interface ILendingStake { function approve(uint256 _amount) external; function wXENE() external view returns (address); }
File 11 of 59: contracts/LendingPool/LendingStake.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Pausable, Context} from "@openzeppelin/contracts/utils/Pausable.sol"; import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {ILendingPool} from "./interfaces/ILendingPool.sol"; contract LendingStake is Context, Pausable, ReentrancyGuard { using Math for uint256; using SafeERC20 for IERC20; using EnumerableSet for EnumerableSet.AddressSet; // A big number to perform mul and div operations uint256 private constant REWARDS_PRECISION = 1e12; // Infomation of each user. struct UserInfo { uint256 amount; // How many wXENE tokens the user has provided. uint256 rewardDebt; // Reward debt. See explanation below. uint256 rewardPending; // // We do some fancy math here. Basically, any point in time, the amount of wXENE // entitled to a user but is pending to be distributed is: // // pending reward = (user.amount * pool.accRewardPerShare) - user.rewardDebt + user.rewardPending // // Whenever a user deposits or withdraws wXENE tokens to a pool. Here's what happens: // 1. The pool's `accRewardPerShare` (and `lastRewardBlock`) gets updated. // 2. User receives the pending reward sent to his/her address. // 3. User's `amount` gets updated. // 4. User's `rewardDebt` gets updated. } // Staking Pool information struct PoolInfo { uint256 lastRewardBlock; // Last block number that Rewards distribution occurs. uint256 accRewardPerShare; // Accumulated reward per share, times 1e12. See below. uint256 stakedSupply; uint256 totalPendingReward; } PoolInfo public poolInfo; // The stake token IERC20 public immutable wXENE; // The lending pool contract address address public lendingPool; // The block number when mining starts uint256 public startBlock; // Rewards created per block. uint256 public rewardPerBlock; // Infomation of each staker mapping(address => UserInfo) public userInfo; // Addresses list of all stakers EnumerableSet.AddressSet private addressList; event Deposit(address indexed user, uint256 amount); event Withdraw(address indexed user, uint256 amount); event ClaimReward(address indexed user, uint256 amount); error OwnableUnauthorizedAccount(address account); error OnlyLendingPool(address account); error RewardBalanceTooSmall(); error AmountTooSmall(); error AmountTooBig(); error InvalidAddress(); error UserAlreadyStaked(); modifier onlyOwner() { if (ILendingPool(lendingPool).owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } _; } constructor(IERC20 _wXENE, address _lendingPool, uint256 _rewardPerBlock, uint256 _startBlock) { wXENE = _wXENE; lendingPool = _lendingPool; rewardPerBlock = _rewardPerBlock; startBlock = _startBlock; // Initial staking pool information poolInfo = PoolInfo({lastRewardBlock: _startBlock, accRewardPerShare: 0, stakedSupply: 0, totalPendingReward: 0}); } /** * @dev Get number of staker */ function addressLength() external view returns (uint256) { return addressList.length(); } /** * @dev Get a staked address by index */ function getAddressByIndex(uint256 _index) external view returns (address) { return addressList.at(_index); } /** * @dev Get all staked addresses */ function getAllAddress() external view returns (address[] memory) { return addressList.values(); } /** * @dev Get current pending rewards of given user */ function pendingReward(address _user) external view returns (uint256) { uint256 accRewardPerShare = poolInfo.accRewardPerShare; uint256 stakedSupply = poolInfo.stakedSupply; if (block.number > poolInfo.lastRewardBlock && stakedSupply != 0) { uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number); uint256 tokenReward = multiplier * rewardPerBlock; accRewardPerShare = accRewardPerShare + tokenReward.mulDiv(REWARDS_PRECISION, stakedSupply); } UserInfo memory user = userInfo[_user]; return user.amount.mulDiv(accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending; } /** * @dev Get current reward supply */ function rewardSupply() external view returns (uint256) { if (block.number > poolInfo.lastRewardBlock && poolInfo.stakedSupply != 0) { uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number); return poolInfo.totalPendingReward + (multiplier * rewardPerBlock); } return poolInfo.totalPendingReward; } /** * @dev called by anyone to update reward variables of the given pool to be up-to-date */ function updatePool() public { if (block.number <= poolInfo.lastRewardBlock) { return; } uint256 wXENESupply = poolInfo.stakedSupply; if (wXENESupply == 0) { poolInfo.lastRewardBlock = block.number; return; } uint256 multiplier = getMultiplier(poolInfo.lastRewardBlock, block.number); uint256 tokenReward = multiplier * rewardPerBlock; poolInfo.totalPendingReward = poolInfo.totalPendingReward + tokenReward; poolInfo.accRewardPerShare = poolInfo.accRewardPerShare + tokenReward.mulDiv(REWARDS_PRECISION, wXENESupply); poolInfo.lastRewardBlock = block.number; } /** * @dev called by users to deposit wXENE tokens */ function deposit(uint256 _amount) external whenNotPaused { if (_amount == 0) revert AmountTooSmall(); updatePool(); wXENE.safeTransferFrom(_msgSender(), address(this), _amount); UserInfo storage user = userInfo[_msgSender()]; if (user.amount == 0 && user.rewardPending == 0 && user.rewardDebt == 0) { addressList.add(_msgSender()); } user.rewardPending = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending; user.amount = user.amount + _amount; user.rewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION); poolInfo.stakedSupply = poolInfo.stakedSupply + _amount; emit Deposit(_msgSender(), _amount); } /** * @dev called by staked users to withdraw staked wXENE tokens */ function withdraw(uint256 _amount) external nonReentrant whenNotPaused { if (_amount == 0) revert AmountTooSmall(); UserInfo storage user = userInfo[_msgSender()]; if (user.amount < _amount) revert AmountTooBig(); updatePool(); user.rewardPending = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION) - user.rewardDebt + user.rewardPending; user.amount = user.amount - _amount; user.rewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION); poolInfo.stakedSupply = poolInfo.stakedSupply - _amount; if (user.amount == 0) { addressList.remove(_msgSender()); } wXENE.safeTransfer(_msgSender(), _amount); emit Withdraw(_msgSender(), _amount); } /** * @dev called by staked users to claim rewards from lending pool */ function claimReward() external nonReentrant whenNotPaused { UserInfo storage user = userInfo[_msgSender()]; updatePool(); uint256 _currentRewardDebt = user.amount.mulDiv(poolInfo.accRewardPerShare, REWARDS_PRECISION); uint256 _amount = _currentRewardDebt - user.rewardDebt + user.rewardPending; if (_amount > wXENE.balanceOf(lendingPool)) { revert RewardBalanceTooSmall(); } user.rewardPending = 0; user.rewardDebt = _currentRewardDebt; poolInfo.totalPendingReward -= _amount; ILendingPool(lendingPool).approveToPayRewards(address(wXENE), _amount); wXENE.safeTransferFrom(lendingPool, _msgSender(), _amount); emit ClaimReward(_msgSender(), _amount); } /** * @dev Get the multiplier between two blocks */ function getMultiplier(uint256 _from, uint256 _to) private pure returns (uint256) { unchecked { return _to - _from; } } /** * @dev called by lending pool to approve tokens for disbursement */ function approve(uint256 _amount) external { if (_msgSender() != lendingPool) revert OnlyLendingPool(_msgSender()); wXENE.approve(lendingPool, _amount); } /** * @dev called by the owner to rescue tokens */ function rescueToken(address _token, address _to) external onlyOwner { if (_to == address(0)) revert InvalidAddress(); uint256 _withdrawable = IERC20(_token).balanceOf(address(this)); // Protect the staked wXENE from being withdrawn if (_token == address(wXENE)) { _withdrawable = _withdrawable > poolInfo.stakedSupply ? _withdrawable - poolInfo.stakedSupply : 0; } IERC20(_token).safeTransfer(_to, _withdrawable); } /** * @dev called by the owner to pause, triggers stopped state */ function pause() external onlyOwner whenNotPaused { _pause(); } /** * @dev called by the owner to unpause, returns to normal state */ function unpause() external onlyOwner whenPaused { _unpause(); } /** * @dev called by the owner to set lending pool address */ function setLendingPool(address _lendingPool) external onlyOwner { if (_lendingPool == address(0)) revert InvalidAddress(); lendingPool = _lendingPool; } /** * @dev called by the owner to set reward per block */ function setRewardPerBlock(uint256 _rewardPerBlock) external onlyOwner { rewardPerBlock = _rewardPerBlock; } /** * @dev called by the owner to set start block */ function setStartBlock(uint256 _startBlock) external onlyOwner { if (poolInfo.stakedSupply != 0) revert UserAlreadyStaked(); startBlock = _startBlock; poolInfo.lastRewardBlock = _startBlock; } }
File 12 of 59: contracts/TokenBoundAccount/libraries/TokenBoundAccountBytecodeLib.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; library TokenBoundAccountBytecodeLib { function getCreationCode( address implementation_, uint256 chainId_, address tokenContract_, uint256 tokenId_, uint256 salt_ ) internal pure returns (bytes memory) { return abi.encodePacked( hex"3d60ad80600a3d3981f3363d3d373d3d3d363d73", implementation_, hex"5af43d82803e903d91602b57fd5bf3", abi.encode(salt_, chainId_, tokenContract_, tokenId_) ); } }
File 13 of 59: @openzeppelin/contracts/utils/cryptography/ECDSA.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
File 14 of 59: @openzeppelin/contracts/interfaces/IERC1363.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
File 15 of 59: @openzeppelin/contracts/token/ERC721/IERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
File 16 of 59: contracts/TokenBoundAccount/libraries/TokenBoundAccountLib.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Create2} from "@openzeppelin/contracts/utils/Create2.sol"; import {TokenBoundAccountBytecodeLib} from "./TokenBoundAccountBytecodeLib.sol"; library TokenBoundAccountLib { function computeAddress( address registry, address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 _salt ) internal pure returns (address) { bytes32 bytecodeHash = keccak256( TokenBoundAccountBytecodeLib.getCreationCode(implementation, chainId, tokenContract, tokenId, _salt) ); return Create2.computeAddress(bytes32(_salt), bytecodeHash, registry); } function token() internal view returns (uint256, address, uint256) { bytes memory footer = new bytes(0x60); assembly { // copy 0x60 bytes from end of footer extcodecopy(address(), add(footer, 0x20), 0x4d, 0x60) } return abi.decode(footer, (uint256, address, uint256)); } function salt() internal view returns (uint256) { bytes memory footer = new bytes(0x20); assembly { // copy 0x20 bytes from beginning of footer extcodecopy(address(), add(footer, 0x20), 0x2d, 0x20) } return abi.decode(footer, (uint256)); } }
File 17 of 59: @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC-721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC-721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
File 18 of 59: contracts/loans/utils/NFTfiSigningUtils.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {LoanData} from "../direct/LoanData.sol"; import {ILendingPool} from "../../LendingPool/interfaces/ILendingPool.sol"; import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; /** * @title NFTfiSigningUtils * @notice Helper contract for Loan. This contract manages verifying signatures from off-chain Loan orders. * Based on the version of this same contract used on Loan V1 */ library NFTfiSigningUtils { /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @dev This function gets the current chain ID. */ function getChainID() public view returns (uint256) { uint256 id; // solhint-disable-next-line no-inline-assembly assembly { id := chainid() } return id; } /** * @notice This function is when the borrower accepts a lender's offer, to validate the lender's signature that the * lender provided off-chain to verify that it did indeed made such offer. * * @param _offer - The offer struct containing: * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.erc20Denomination * - offer.principalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.duration * - offer.adminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - address of this contract * - chainId */ function isValidLenderSignature( LoanData.Offer memory _offer, LoanData.Signature memory _signature ) external view returns (bool) { return isValidLenderSignature(_offer, _signature, address(this)); } /** * @dev This function overload the previous function to allow the caller to specify the address of the contract * * @param _offer - The offer struct containing: * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.erc20Denomination * - offer.principalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.duration * - offer.adminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - address of this contract * - chainId * @param _loanContract contract address of loan */ function isValidLenderSignature( LoanData.Offer memory _offer, LoanData.Signature memory _signature, address _loanContract ) public view returns (bool) { require(block.timestamp <= _signature.expiry, "Lender Signature has expired"); require(_loanContract != address(0), "Loan is zero address"); if (_signature.signer == address(0)) { return false; } else { if (_offer.lendingPool != address(0)) { require(ILendingPool(_offer.lendingPool).isAdmin(_signature.signer), "Signature signer is not admin"); } bytes32 message = keccak256( abi.encodePacked(getEncodedOffer(_offer), getEncodedSignature(_signature), _loanContract, getChainID()) ); return SignatureChecker.isValidSignatureNow( _signature.signer, MessageHashUtils.toEthSignedMessageHash(message), _signature.signature ); } } /** * @notice This function is called in renegotiateLoan() to validate the lender's signature that the lender provided * off-chain to verify that they did indeed want to agree to this loan renegotiation according to these terms. * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _loan The current loan data * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * - expiry - The date when the renegotiation offer expires * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _lenderNonce * - _expiry * - address of this contract * - chainId */ function isValidLenderRenegotiationSignature( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, LoanData.LoanTerms memory _loan, LoanData.Signature memory _signature ) external view returns (bool) { return isValidLenderRenegotiationSignature( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, _loan, _signature, address(this) ); } /** * @dev This function overload the previous function to allow the caller to specify the address of the contract * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _loan The current loan data * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * - expiry - The date when the renegotiation offer expires * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _lenderNonce * - _expiry * - address of this contract * - chainId * * @param _loanContract contract address of loan */ function isValidLenderRenegotiationSignature( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, LoanData.LoanTerms memory _loan, LoanData.Signature memory _signature, address _loanContract ) public view returns (bool) { require(block.timestamp <= _signature.expiry, "Renegotiation Signature has expired"); require(_loanContract != address(0), "Loan is zero address"); if (_loan.useLendingPool) { if (!ILendingPool(_loan.lender).isAdmin(_signature.signer)) return false; } else { if (_signature.signer != _loan.lender) return false; } bytes32 message = keccak256( abi.encodePacked( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, getEncodedSignature(_signature), _loanContract, getChainID() ) ); return SignatureChecker.isValidSignatureNow( _signature.signer, MessageHashUtils.toEthSignedMessageHash(message), _signature.signature ); } /** * @dev We need this to avoid stack too deep errors. * @param _offer - The offer struct containing: * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. */ function getEncodedOffer(LoanData.Offer memory _offer) internal pure returns (bytes memory) { return abi.encodePacked( _offer.erc20Denomination, _offer.principalAmount, _offer.maximumRepaymentAmount, _offer.nftCollateralContract, _offer.nftCollateralId, _offer.duration, _offer.adminFeeInBasisPoints, _offer.lendingPool ); } /** * @dev We need this to avoid stack too deep errors. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.erc20Denomination * - offer.principalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.duration * - offer.adminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - address of this contract * - chainId */ function getEncodedSignature(LoanData.Signature memory _signature) internal pure returns (bytes memory) { return abi.encodePacked(_signature.signer, _signature.nonce, _signature.expiry); } }
File 19 of 59: @openzeppelin/contracts/interfaces/draft-IERC6093.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
File 20 of 59: @openzeppelin/contracts/token/ERC721/utils/ERC721Utils.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol"; /** * @dev Library that provide common ERC-721 utility functions. * * See https://eips.ethereum.org/EIPS/eip-721[ERC-721]. * * _Available since v5.1._ */ library ERC721Utils { /** * @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received} * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`). * * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA). * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept * the transfer. */ function checkOnERC721Received( address operator, address from, address to, uint256 tokenId, bytes memory data ) internal { if (to.code.length > 0) { try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) { if (retval != IERC721Receiver.onERC721Received.selector) { // Token rejected revert IERC721Errors.ERC721InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { // non-IERC721Receiver implementer revert IERC721Errors.ERC721InvalidReceiver(to); } else { assembly ("memory-safe") { revert(add(32, reason), mload(reason)) } } } } } }
File 21 of 59: @openzeppelin/contracts/utils/introspection/IERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
File 22 of 59: @openzeppelin/contracts/utils/Panic.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
File 23 of 59: contracts/TokenBoundAccount/interfaces/ITokenBoundAccount.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; interface ITokenBoundAccountProxy { function implementation() external view returns (address); } /// @dev the ERC-165 identifier for this interface is `0xeff4d378` interface ITokenBoundAccount { event TransactionExecuted(address indexed target, uint256 indexed value, bytes data); receive() external payable; function executeCall(address to, uint256 value, bytes calldata data) external payable returns (bytes memory); function token() external view returns (uint256 chainId, address tokenContract, uint256 tokenId); function owner() external view returns (address); function nonce() external view returns (uint256); }
File 24 of 59: @openzeppelin/contracts/interfaces/IERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "../token/ERC721/IERC721.sol";
File 25 of 59: @openzeppelin/contracts/token/ERC721/extensions/ERC721URIStorage.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/extensions/ERC721URIStorage.sol) pragma solidity ^0.8.20; import {ERC721} from "../ERC721.sol"; import {Strings} from "../../../utils/Strings.sol"; import {IERC4906} from "../../../interfaces/IERC4906.sol"; import {IERC165} from "../../../interfaces/IERC165.sol"; /** * @dev ERC-721 token with storage based token URI management. */ abstract contract ERC721URIStorage is IERC4906, ERC721 { using Strings for uint256; // Interface ID as defined in ERC-4906. This does not correspond to a traditional interface ID as ERC-4906 only // defines events and does not include any external function. bytes4 private constant ERC4906_INTERFACE_ID = bytes4(0x49064906); // Optional mapping for token URIs mapping(uint256 tokenId => string) private _tokenURIs; /** * @dev See {IERC165-supportsInterface} */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721, IERC165) returns (bool) { return interfaceId == ERC4906_INTERFACE_ID || super.supportsInterface(interfaceId); } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { _requireOwned(tokenId); string memory _tokenURI = _tokenURIs[tokenId]; string memory base = _baseURI(); // If there is no base URI, return the token URI. if (bytes(base).length == 0) { return _tokenURI; } // If both are set, concatenate the baseURI and tokenURI (via string.concat). if (bytes(_tokenURI).length > 0) { return string.concat(base, _tokenURI); } return super.tokenURI(tokenId); } /** * @dev Sets `_tokenURI` as the tokenURI of `tokenId`. * * Emits {MetadataUpdate}. */ function _setTokenURI(uint256 tokenId, string memory _tokenURI) internal virtual { _tokenURIs[tokenId] = _tokenURI; emit MetadataUpdate(tokenId); } }
File 26 of 59: @openzeppelin/contracts/utils/math/SafeCast.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
File 27 of 59: contracts/TokenBoundAccount/TokenBoundAccount.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import {IERC1271} from "@openzeppelin/contracts/interfaces/IERC1271.sol"; import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; import {ITokenBoundAccount} from "./interfaces/ITokenBoundAccount.sol"; import {TokenBoundAccountLib} from "./libraries/TokenBoundAccountLib.sol"; contract TokenBoundAccount is IERC165, IERC1271, ITokenBoundAccount { uint256 public nonce; receive() external payable {} function executeCall( address to, uint256 value, bytes calldata data ) external payable returns (bytes memory result) { require(msg.sender == owner(), "Not token owner"); ++nonce; emit TransactionExecuted(to, value, data); bool success; (success, result) = to.call{value: value}(data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } } function token() external view returns (uint256, address, uint256) { return TokenBoundAccountLib.token(); } function owner() public view returns (address) { (uint256 chainId, address tokenContract, uint256 tokenId) = this.token(); if (chainId != block.chainid) return address(0); return IERC721(tokenContract).ownerOf(tokenId); } function supportsInterface(bytes4 interfaceId) public pure returns (bool) { return (interfaceId == type(IERC165).interfaceId || interfaceId == type(ITokenBoundAccount).interfaceId); } function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue) { bool isValid = SignatureChecker.isValidSignatureNow(owner(), hash, signature); if (isValid) { return IERC1271.isValidSignature.selector; } return ""; } }
File 28 of 59: contracts/Marketplace/IMarketplace.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /** * @title Marketplace Interface * */ interface IMarketplace { enum ItemStatus { OPENING, SOLD, CLOSED } function makeItem(address _nft, uint256 _tokenId, address _paymentToken, uint256 _price, address _beneficiary) external; function closeItem(uint256 _itemId) external; error InvalidFeeReceiver(); error InvalidFeePercent(); error InvalidNft(); error InvalidPrice(); error InvalidBeneficiary(); error NotPermittedToken(); error NotExistedItem(); error NotOpeningItem(); error NotEnougnETH(); error OnlyItemOwner(); }
File 29 of 59: contracts/utils/Permission.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; /** * @title Permission * * @notice This abstract contract provides a modifier to restrict the permission of functions. */ abstract contract Permission is Ownable { /* ******* */ /* STORAGE */ /* ******* */ /** * @notice _admins mapping from token ID to isAdmin status */ mapping(address => bool) public admins; /* ****** */ /* EVENTS */ /* ****** */ event SetAdmin(address indexed user, bool allow); /* ********* */ /* ERRORS */ /* ********* */ error AdminUnauthorizedAccount(address account); error PermissionUnauthorizedAccount(address account); error InvalidAddress(); error InvalidLength(); /* ********* */ /* MODIFIERS */ /* ********* */ /** * Throw exception of caller is not admin */ modifier onlyAdmin() { if (owner() != _msgSender() && !admins[_msgSender()]) { revert AdminUnauthorizedAccount(_msgSender()); } _; } /** * Throw exception if _account is not permitted * @param _account Account will be checked */ modifier permittedTo(address _account) { if (_msgSender() != _account) { revert PermissionUnauthorizedAccount(_msgSender()); } _; } /* ****************** */ /* PUBLIC FUNCTIONS */ /* ****************** */ /** * @notice Add/Remove an admin. * @dev Only owner can call this function. * @param _user user address * @param _allow Specific user will be set as admin or not */ function setAdmin(address _user, bool _allow) public virtual onlyOwner { _setAdmin(_user, _allow); } /** * @notice Add/Remove an admin. * @dev Only owner can call this function. * @param _users List of user address * @param _allow Specific users will be set as admin or not */ function setAdmins(address[] memory _users, bool _allow) public virtual onlyOwner { if (_users.length == 0) revert InvalidLength(); for (uint256 i = 0; i < _users.length; i++) { _setAdmin(_users[i], _allow); } } /* ****************** */ /* INTERNAL FUNCTIONS */ /* ****************** */ /** * @notice Add/Remove an admin. * @dev Only owner can call this function. * @param _user User address * @param _allow Specific user will be set as admin or not * * emit {SetAdmin} event */ function _setAdmin(address _user, bool _allow) internal virtual { if (_user == address(0)) revert InvalidAddress(); admins[_user] = _allow; emit SetAdmin(_user, _allow); } /* ****************** */ /* VIEW FUNCTIONS */ /* ****************** */ /** * @notice Check account whether it is the admin role. * @dev Everyone can call * @param _account User's account will be checkedd */ function isAdmin(address _account) external view returns (bool) { return owner() == _account || admins[_account]; } }
File 30 of 59: contracts/loans/direct/DirectLoanFixedOffer.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {DirectLoanBaseMinimal, NFTfiSigningUtils, LoanChecksAndCalculations} from "./DirectLoanBaseMinimal.sol"; /** * @title DirectLoanFixed * @notice Main contract for Loan Direct Loans Fixed Type. This contract manages the ability to create NFT-backed * peer-to-peer loans of type Fixed (agreed to be a fixed-repayment loan) where the borrower pays the * maximumRepaymentAmount regardless of whether they repay early or not. * * There are two ways to commence an NFT-backed loan: * * a. The borrower accepts a lender's offer by calling `acceptOffer`. * 1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their * be1alf. * 2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their * behalf. * 3. the lender signs an off-chain message, proposing its offer terms. * 4. the borrower calls `acceptOffer` to accept these terms and enter into the loan. The NFT is stored in * the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender receives an * Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, or the * underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation receipt * (in ERC721 form) that gives them the right to pay back the loan and get the collateral back. * * b. The lender accepts a borrowe's binding terms by calling `acceptListing`. * 1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their * be1alf. * 2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their * behalf. * 3. the borrower signs an off-chain message, proposing its binding terms. * 4. the lender calls `acceptListing` with an offer matching the binding terms and enter into the loan. The NFT is * stored in the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender * receives an Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, * or the underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation * receipt (in ERC721 form) that gives them the right to pay back the loan and get the collateral back. * * The lender can freely transfer and trade this ERC721 promissory note as they wish, with the knowledge that * transferring the ERC721 promissory note tranfsers the rights to principal-plus-interest and/or collateral, and that * they will no longer have a claim on the loan. The ERC721 promissory note itself represents that claim. * * The borrower can freely transfer and trade this ERC721 obligaiton receipt as they wish, with the knowledge that * transferring the ERC721 obligaiton receipt tranfsers the rights right to pay back the loan and get the collateral * back. * * * A loan may end in one of two ways: * - First, a borrower may call Loan.payBackLoan() and pay back the loan plus interest at any time, in which case they * receive their NFT back in the same transaction. * - Second, if the loan's duration has passed and the loan has not been paid back yet, a lender can call * Loan.liquidateOverdueLoan(), in which case they receive the underlying NFT collateral and forfeit the rights to the * principal-plus-interest, which the borrower now keeps. */ contract DirectLoanFixedOffer is DirectLoanBaseMinimal { /* *********** */ /* CONSTRUCTOR */ /* *********** */ /** * @dev Sets `hub` and permitted erc20-s * * @param _admin - Initial admin of this contract. * @param _permittedErc20s - list of permitted ERC20 token contract addresses */ constructor(address _admin, address[] memory _permittedErc20s) DirectLoanBaseMinimal(_admin, _permittedErc20s) { // solhint-disable-previous-line no-empty-blocks } /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @notice This function is called by the borrower when accepting a lender's offer to begin a loan. * * @param _loanId - offchain id of loan * @param _offer - The offer made by the lender. * @param _signature - The components of the lender's signature. */ function acceptOffer(bytes32 _loanId, Offer memory _offer, Signature memory _signature) external whenNotPaused nonReentrant { _loanSanityChecks(_offer); _loanSanityChecksOffer(_offer); address lender = _offer.lendingPool != address(0) ? _offer.lendingPool : _signature.signer; _acceptOffer(_loanId, _setupLoanTerms(_offer, lender), _offer, _signature); } /* ****************** */ /* INTERNAL FUNCTIONS */ /* ****************** */ /** * @notice This function is called by the borrower when accepting a lender's offer to begin a loan. * * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan. * @param _offer - The offer made by the lender. * @param _signature - The components of the lender's signature. */ function _acceptOffer(bytes32 _loanId, LoanTerms memory _loanTerms, Offer memory _offer, Signature memory _signature) internal { // Check loan nonces. These are different from Ethereum account nonces. // Here, these are uint256 numbers that should uniquely identify // each signature for each user (i.e. each user should only create one // off-chain signature for each nonce, with a nonce being any arbitrary // uint256 value that they have not used yet for an off-chain Loan // signature). require(!_nonceHasBeenUsedForUser[_signature.signer][_signature.nonce], "Lender nonce invalid"); _nonceHasBeenUsedForUser[_signature.signer][_signature.nonce] = true; require(NFTfiSigningUtils.isValidLenderSignature(_offer, _signature), "Lender signature is invalid"); _createLoan(_loanId, _loanTerms, msg.sender, _loanTerms.lender); // Emit an event with all relevant details from this transaction. emit LoanStarted(_loanId, msg.sender, _loanTerms.lender, _loanTerms); } /** * @dev Creates a `LoanTerms` struct using data sent as the lender's `_offer` on `acceptOffer`. * This is needed in order to avoid stack too deep issues. */ function _setupLoanTerms(Offer memory _offer, address _lender) internal view returns (LoanTerms memory) { return LoanTerms({ erc20Denomination: _offer.erc20Denomination, principalAmount: _offer.principalAmount, maximumRepaymentAmount: _offer.maximumRepaymentAmount, nftCollateralContract: _offer.nftCollateralContract, nftCollateralId: _offer.nftCollateralId, loanStartTime: uint64(block.timestamp), duration: _offer.duration, adminFeeInBasisPoints: _offer.adminFeeInBasisPoints, borrower: msg.sender, lender: _lender, useLendingPool: _offer.lendingPool != address(0) }); } /** * @dev Calculates the payoff amount and admin fee * * @param _loanTerms - Struct containing all the loan's parameters */ function _payoffAndFee(LoanTerms memory _loanTerms) internal pure override returns (uint256 adminFee, uint256 payoffAmount) { // Calculate amounts to send to lender and admins uint256 interestDue = _loanTerms.maximumRepaymentAmount - _loanTerms.principalAmount; adminFee = LoanChecksAndCalculations.computeAdminFee(interestDue, uint256(_loanTerms.adminFeeInBasisPoints)); payoffAmount = _loanTerms.maximumRepaymentAmount - adminFee; } /** * @dev Function that performs some validation checks over loan parameters when accepting an offer * */ function _loanSanityChecksOffer(Offer memory _offer) internal pure { require(_offer.maximumRepaymentAmount >= _offer.principalAmount, "Negative interest rate loans are not allowed."); } }
File 31 of 59: @openzeppelin/contracts/utils/ReentrancyGuard.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
File 32 of 59: @openzeppelin/contracts/token/ERC721/ERC721.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "./IERC721.sol"; import {IERC721Metadata} from "./extensions/IERC721Metadata.sol"; import {ERC721Utils} from "./utils/ERC721Utils.sol"; import {Context} from "../../utils/Context.sol"; import {Strings} from "../../utils/Strings.sol"; import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol"; import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors { using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; mapping(uint256 tokenId => address) private _owners; mapping(address owner => uint256) private _balances; mapping(uint256 tokenId => address) private _tokenApprovals; mapping(address owner => mapping(address operator => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual returns (uint256) { if (owner == address(0)) { revert ERC721InvalidOwner(address(0)); } return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual returns (address) { return _requireOwned(tokenId); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual returns (string memory) { _requireOwned(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual { _approve(to, tokenId, _msgSender()); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual returns (address) { _requireOwned(tokenId); return _getApproved(tokenId); } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here. address previousOwner = _update(to, tokenId, _msgSender()); if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual { transferFrom(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist * * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`. */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted. */ function _getApproved(uint256 tokenId) internal view virtual returns (address) { return _tokenApprovals[tokenId]; } /** * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in * particular (ignoring whether it is owned by `owner`). * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) { return spender != address(0) && (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender); } /** * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner. * Reverts if: * - `spender` does not have approval from `owner` for `tokenId`. * - `spender` does not have approval to manage all of `owner`'s assets. * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual { if (!_isAuthorized(owner, spender, tokenId)) { if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } else { revert ERC721InsufficientApproval(spender, tokenId); } } } /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that * a uint256 would ever overflow from increments when these increments are bounded to uint128 values. * * WARNING: Increasing an account's balance using this function tends to be paired with an override of the * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership * remain consistent with one another. */ function _increaseBalance(address account, uint128 value) internal virtual { unchecked { _balances[account] += value; } } /** * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update. * * The `auth` argument is optional. If the value passed is non 0, then this function will check that * `auth` is either the owner of the token, or approved to operate on the token (by the owner). * * Emits a {Transfer} event. * * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}. */ function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) { address from = _ownerOf(tokenId); // Perform (optional) operator check if (auth != address(0)) { _checkAuthorized(from, auth, tokenId); } // Execute the update if (from != address(0)) { // Clear approval. No need to re-authorize or emit the Approval event _approve(address(0), tokenId, address(0), false); unchecked { _balances[from] -= 1; } } if (to != address(0)) { unchecked { _balances[to] += 1; } } _owners[tokenId] = to; emit Transfer(from, to, tokenId); return from; } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner != address(0)) { revert ERC721InvalidSender(address(0)); } } /** * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual { _mint(to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal { address previousOwner = _update(address(0), tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } else if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients * are aware of the ERC-721 standard to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is like {safeTransferFrom} in the sense that it invokes * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `tokenId` token must exist and be owned by `from`. * - `to` cannot be the zero address. * - `from` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId) internal { _safeTransfer(from, to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual { _transfer(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Approve `to` to operate on `tokenId` * * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is * either the owner of the token, or approved to operate on all tokens held by this owner. * * Emits an {Approval} event. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address to, uint256 tokenId, address auth) internal { _approve(to, tokenId, auth, true); } /** * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not * emitted in the context of transfers. */ function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual { // Avoid reading the owner unless necessary if (emitEvent || auth != address(0)) { address owner = _requireOwned(tokenId); // We do not use _isAuthorized because single-token approvals should not be able to call approve if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) { revert ERC721InvalidApprover(auth); } if (emitEvent) { emit Approval(owner, to, tokenId); } } _tokenApprovals[tokenId] = to; } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Requirements: * - operator can't be the address zero. * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { if (operator == address(0)) { revert ERC721InvalidOperator(operator); } _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned). * Returns the owner. * * Overrides to ownership logic should be done to {_ownerOf}. */ function _requireOwned(uint256 tokenId) internal view returns (address) { address owner = _ownerOf(tokenId); if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } return owner; } }
File 33 of 59: @openzeppelin/contracts/interfaces/IERC4906.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4906.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; import {IERC721} from "./IERC721.sol"; /// @title ERC-721 Metadata Update Extension interface IERC4906 is IERC165, IERC721 { /// @dev This event emits when the metadata of a token is changed. /// So that the third-party platforms such as NFT market could /// timely update the images and related attributes of the NFT. event MetadataUpdate(uint256 _tokenId); /// @dev This event emits when the metadata of a range of tokens is changed. /// So that the third-party platforms such as NFT market could /// timely update the images and related attributes of the NFTs. event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId); }
File 34 of 59: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
File 35 of 59: contracts/loans/direct/LoanData.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /** * @title LoanData * @notice An interface containg the main Loan struct shared by Direct Loans types. */ interface LoanData { /* ********** */ /* DATA TYPES */ /* ********** */ /** * @notice The main Loan Terms struct. This data is saved upon loan creation. * * @param erc20Denomination - The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * @param maximumRepaymentAmount - The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * @param nftCollateralContract - The address of the the NFT collateral contract. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param loanStartTime - The block.timestamp when the loan first began (measured in seconds). * @param duration - The amount of time (measured in seconds) that can elapse before the lender can liquidate * the loan and seize the underlying collateral NFT. * @param adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param lender - Address of lender * @param useLendingPool - If true, lender is a contract */ struct LoanTerms { uint256 principalAmount; uint256 maximumRepaymentAmount; uint256 nftCollateralId; address erc20Denomination; uint32 duration; uint16 adminFeeInBasisPoints; uint64 loanStartTime; address nftCollateralContract; address borrower; address lender; bool useLendingPool; } /** * @notice The offer made by the lender. Used as parameter on both acceptOffer (initiated by the borrower) and * acceptListing (initiated by the lender). * * @param erc20Denomination - The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * @param maximumRepaymentAmount - The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always * have to pay this amount to retrieve their collateral, regardless of whether they repay early. * @param nftCollateralContract - The address of the ERC721 contract of the NFT collateral. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param referrer - The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * @param duration - The amount of time (measured in seconds) that can elapse before the lender can liquidate * the loan and seize the underlying collateral NFT. * @param adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param lendingPool - Lending pool address is contract that will disburse loan, signature signer must * be admin of contract If lender is a wallet, this address must be ZERO address */ struct Offer { uint256 principalAmount; uint256 maximumRepaymentAmount; uint256 nftCollateralId; address nftCollateralContract; uint32 duration; uint16 adminFeeInBasisPoints; address erc20Denomination; address lendingPool; } /** * @notice Signature related params. Used as parameter on both acceptOffer (containing borrower signature) and * acceptListing (containing lender signature). * * @param signer - The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * @param nonce - The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * @param expiry - Date when the signature expires * @param signature - The ECDSA signature of the borrower or the lender, obtained off-chain ahead of time, signing * the following combination of parameters: * - Lender: * - Offer.erc20Denomination * - Offer.principalAmount * - Offer.maximumRepaymentAmount * - Offer.nftCollateralContract * - Offer.nftCollateralId * - Offer.duration * - Offer.adminFeeInBasisPoints * - Offer.useLendingPool * - Offer.lendingPool * - Signature.signer, * - Signature.nonce, * - Signature.expiry, * - address of the loan type contract * - chainId */ struct Signature { uint256 nonce; uint256 expiry; address signer; bytes signature; } }
File 36 of 59: @openzeppelin/contracts/interfaces/IERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
File 37 of 59: @openzeppelin/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
File 38 of 59: contracts/loans/direct/IDirectLoanBase.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; interface IDirectLoanBase { function maximumLoanDuration() external view returns (uint256); function adminFeeInBasisPoints() external view returns (uint16); function loanIdToLoan( bytes32 ) external view returns ( uint256, uint256, uint256, address, uint32, uint16, uint64, address, address, address, bool ); function loanRepaidOrLiquidated(bytes32) external view returns (bool); function getWhetherNonceHasBeenUsedForUser(address _user, uint256 _nonce) external view returns (bool); function isValidLoanId(bytes32 _loanId) external view returns (bool); }
File 39 of 59: contracts/WXENE.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; contract WXENE is ERC20 { event Minted(address account, uint256 amount); event Burnt(address account, uint256 amount); error TransferNativeFailed(); /* *********** */ /* CONSTRUCTOR */ /* *********** */ constructor() ERC20("Wrapped XENE", "wXENE") {} /* ****************** */ /* EXTERNAL FUNCTIONS */ /* ****************** */ /** * @notice Mint wXENE to user * @dev Everyone can call this function * * emit {Minted} event */ function mint() external payable { _mint(_msgSender(), msg.value); emit Minted(_msgSender(), msg.value); } /** * @notice Mint wXENE to a specific user * @dev Everyone can call this function * * emit {Minted} event */ function mintTo(address _receiver) external payable { _mint(_receiver, msg.value); emit Minted(_receiver, msg.value); } /** * @notice Burn wXENE and transfer XENE to user * @param _amount Amount of token * * emit {Burnt} event */ function burn(uint256 _amount) external { _burn(_msgSender(), _amount); (bool success, ) = (_msgSender()).call{value: _amount}(""); if (!success) revert TransferNativeFailed(); emit Burnt(_msgSender(), _amount); } }
File 40 of 59: @openzeppelin/contracts/utils/math/SignedMath.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
File 41 of 59: contracts/loans/direct/DirectLoanBaseMinimal.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {IDirectLoanBase} from "./IDirectLoanBase.sol"; import {LoanData} from "./LoanData.sol"; import {LoanChecksAndCalculations} from "./LoanChecksAndCalculations.sol"; import {BaseLoan} from "../BaseLoan.sol"; import {NFTfiSigningUtils, ILendingPool} from "../utils/NFTfiSigningUtils.sol"; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; /** * @title DirectLoanBase * @notice Main contract for Loan Direct Loans Type. This contract manages the ability to create NFT-backed * peer-to-peer loans. * * There are two ways to commence an NFT-backed loan: * * a. The borrower accepts a lender's offer by calling `acceptOffer`. * 1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their * be1alf. * 2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their * behalf. * 3. the lender signs an off-chain message, proposing its offer terms. * 4. the borrower calls `acceptOffer` to accept these terms and enter into the loan. The NFT is stored in * the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender receives an * Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, or the * underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation receipt * (in ERC721 form) that gives them the right to pay back the loan and get the collateral back. * * b. The lender accepts a borrowe's binding terms by calling `acceptListing`. * 1. the borrower calls nftContract.approveAll(Loan), approving the Loan contract to move their NFT's on their * be1alf. * 2. the lender calls erc20Contract.approve(Loan), allowing Loan to move the lender's ERC20 tokens on their * behalf. * 3. the borrower signs an off-chain message, proposing its binding terms. * 4. the lender calls `acceptListing` with an offer matching the binding terms and enter into the loan. The NFT is * stored in the contract, the borrower receives the loan principal in the specified ERC20 currency, the lender * receives an Loan promissory note (in ERC721 form) that represents the rights to either the principal-plus-interest, * or the underlying NFT collateral if the borrower does not pay back in time, and the borrower receives obligation * receipt (in ERC721 form) that gives them the right to pay back the loan and get the collateral back. * * The lender can freely transfer and trade this ERC721 promissory note as they wish, with the knowledge that * transferring the ERC721 promissory note tranfsers the rights to principal-plus-interest and/or collateral, and that * they will no longer have a claim on the loan. The ERC721 promissory note itself represents that claim. * * The borrower can freely transfer and trade this ERC721 obligaiton receipt as they wish, with the knowledge that * transferring the ERC721 obligaiton receipt tranfsers the rights right to pay back the loan and get the collateral * back. * * A loan may end in one of two ways: * - First, a borrower may call Loan.payBackLoan() and pay back the loan plus interest at any time, in which case they * receive their NFT back in the same transaction. * - Second, if the loan's duration has passed and the loan has not been paid back yet, a lender can call * Loan.liquidateOverdueLoan(), in which case they receive the underlying NFT collateral and forfeit the rights to the * principal-plus-interest, which the borrower now keeps. * * * If the loan was created as a ProRated type loan (pro-rata interest loan), then the user only pays the principal plus * pro-rata interest if repaid early. * However, if the loan was was created as a Fixed type loan (agreed to be a fixed-repayment loan), then the borrower * pays the maximumRepaymentAmount regardless of whether they repay early or not. * */ abstract contract DirectLoanBaseMinimal is IDirectLoanBase, BaseLoan, ERC721Holder, LoanData { using SafeERC20 for IERC20; /* ******* */ /* STORAGE */ /* ******* */ uint16 public constant HUNDRED_PERCENT = 10000; /** * @notice The maximum duration of any loan started for this loan type, measured in seconds. This is both a * sanity-check for borrowers and an upper limit on how long admins will have to support v1 of this contract if they * eventually deprecate it, as well as a check to ensure that the loan duration never exceeds the space alotted for * it in the loan struct. */ uint256 public override maximumLoanDuration = 53 weeks; /** * @notice The percentage of interest earned by lenders on this platform that is taken by the contract admin's as a * fee, measured in basis points (hundreths of a percent). The max allowed value is 10000. */ uint16 public override adminFeeInBasisPoints = 25; /** * @notice A mapping from a loan's identifier to the loan's details, represted by the loan struct. */ mapping(bytes32 => LoanTerms) public loanIdToLoan; /** * @notice A mapping tracking whether a loan has either been repaid or liquidated. This prevents an attacker trying * to repay or liquidate the same loan twice. */ mapping(bytes32 => bool) public loanRepaidOrLiquidated; /** * @dev keeps track of tokens being held as loan collateral, so we dont allow these * to be transferred with the aridrop draining functions */ mapping(address => mapping(uint256 => uint256)) private _escrowTokens; /** * @notice A mapping that takes both a user's address and a loan nonce that was first used when signing an off-chain * order and checks whether that nonce has previously either been used for a loan, or has been pre-emptively * cancelled. The nonce referred to here is not the same as an Ethereum account's nonce. We are referring instead to * nonces that are used by both the lender and the borrower when they are first signing off-chain Loan orders. * * These nonces can be any uint256 value that the user has not previously used to sign an off-chain order. Each * nonce can be used at most once per user within Loan, regardless of whether they are the lender or the borrower * in that situation. This serves two purposes. First, it prevents replay attacks where an attacker would submit a * user's off-chain order more than once. Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. */ mapping(address => mapping(uint256 => bool)) internal _nonceHasBeenUsedForUser; /** * @notice A mapping from an ERC20 currency address to whether that currency * is permitted to be used by this contract. */ mapping(address => bool) private erc20Permits; /** * @notice A mapping from an NFT contract's address to the Token type of that contract. A zero Token Type indicates * non-permitted. */ mapping(address => bool) private nftPermits; /* ****** */ /* EVENTS */ /* ****** */ /** * @notice This event is fired whenever the admins change the percent of interest rates earned that they charge as a * fee. Note that newAdminFee can never exceed 10,000, since the fee is measured in basis points. * * @param newAdminFee - The new admin fee measured in basis points. This is a percent of the interest paid upon a * loan's completion that go to the contract admins. */ event AdminFeeUpdated(uint16 newAdminFee); /** * @notice This event is fired whenever the admins change the maximum duration of any loan started for this loan * type. * * @param newMaximumLoanDuration - The new maximum duration. */ event MaximumLoanDurationUpdated(uint256 newMaximumLoanDuration); /** * @notice This event is fired whenever a borrower begins a loan by calling Loan.beginLoan(), which can only occur * after both the lender and borrower have approved their ERC721 and ERC20 contracts to use Loan, and when they * both have signed off-chain messages that agree on the terms of the loan. * * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param borrower - The address of the borrower. * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721 * token that they received when the loan began. */ event LoanStarted(bytes32 indexed loanId, address indexed borrower, address indexed lender, LoanTerms loanTerms); /** * @notice This event is fired whenever a borrower successfully repays their loan, paying * principal-plus-interest-minus-fee to the lender in erc20Denomination, paying fee to owner in * erc20Denomination, and receiving their NFT collateral back. * * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param borrower - The address of the borrower. * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721 * token that they received when the loan began. * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param amountPaidToLender - The amount of ERC20 that the borrower paid to the lender, measured in the smalled * units of erc20Denomination. * @param adminFee - The amount of interest paid to the contract admins, measured in the smalled units of * erc20Denomination and determined by adminFeeInBasisPoints. This amount never exceeds the amount of interest * earned. * @param interest - The amount of interest paid to the lender. * @param nftCollateralContract - The ERC721 contract of the NFT collateral * @param erc20Denomination - The ERC20 contract of the currency being used as principal/interest for this * loan. */ event LoanRepaid( bytes32 indexed loanId, address indexed borrower, address indexed lender, uint256 principalAmount, uint256 nftCollateralId, uint256 amountPaidToLender, uint256 adminFee, uint256 interest, address nftCollateralContract, address erc20Denomination ); /** * @notice This event is fired whenever a lender liquidates an outstanding loan that is owned to them that has * exceeded its duration. The lender receives the underlying NFT collateral, and the borrower no longer needs to * repay the loan principal-plus-interest. * * @param loanId - A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param borrower - The address of the borrower. * @param lender - The address of the lender. The lender can change their address by transferring the Loan ERC721 * token that they received when the loan began. * @param principalAmount - The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * @param nftCollateralId - The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * @param loanMaturityDate - The unix time (measured in seconds) that the loan became due and was eligible for * liquidation. * @param loanLiquidationDate - The unix time (measured in seconds) that liquidation occurred. * @param nftCollateralContract - The ERC721 contract of the NFT collateral */ event LoanLiquidated( bytes32 indexed loanId, address indexed borrower, address indexed lender, uint256 principalAmount, uint256 nftCollateralId, uint256 loanMaturityDate, uint256 loanLiquidationDate, address nftCollateralContract ); /** * @notice This event is fired when some of the terms of a loan are being renegotiated. * * @param loanId - The unique identifier for the loan to be renegotiated * @param newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param renegotiationFee Agreed upon fee in loan denomination that borrower pays for the lender for the * renegotiation, has to be paid with an ERC20 transfer erc20Denomination token, uses transfer from, * frontend will have to propmt an erc20 approve for this from the borrower to the lender * @param renegotiationAdminFee renegotiationFee admin portion based on determined by adminFeeInBasisPoints */ event LoanRenegotiated( bytes32 indexed loanId, address indexed borrower, address indexed lender, uint32 newLoanDuration, uint256 newMaximumRepaymentAmount, uint256 renegotiationFee, uint256 renegotiationAdminFee ); /** * @notice This event is fired whenever the admin sets a ERC20 permit. * * @param erc20Contract - Address of the ERC20 contract. * @param isPermitted - Signals ERC20 permit. */ event ERC20Permit(address indexed erc20Contract, bool isPermitted); /* *********** */ /* CONSTRUCTOR */ /* *********** */ /** * @dev Sets `permittedNFTs` * * @param _admin - Initial admin of this contract. * @param _permittedErc20s - */ constructor(address _admin, address[] memory _permittedErc20s) BaseLoan(_admin) { for (uint256 i = 0; i < _permittedErc20s.length; i++) { _setERC20Permit(_permittedErc20s[i], true); } } /** * @notice This function can be called by admins to change the maximumLoanDuration. Note that they can never change * maximumLoanDuration to be greater than UINT32_MAX, since that's the maximum space alotted for the duration in the * loan struct. * * @param _newMaximumLoanDuration - The new maximum loan duration, measured in seconds. * * emit {MaximumLoanDurationUpdated} event */ function updateMaximumLoanDuration(uint256 _newMaximumLoanDuration) external onlyOwner { require(_newMaximumLoanDuration <= uint256(type(uint32).max), "Loan duration overflow"); maximumLoanDuration = _newMaximumLoanDuration; emit MaximumLoanDurationUpdated(_newMaximumLoanDuration); } /** * @notice This function can be called by admins to change the percent of interest rates earned that they charge as * a fee. Note that newAdminFee can never exceed 10,000, since the fee is measured in basis points. * * @param _newAdminFeeInBasisPoints - The new admin fee measured in basis points. This is a percent of the interest * paid upon a loan's completion that go to the contract admins. * * emit {AdminFeeUpdated} event */ function updateAdminFee(uint16 _newAdminFeeInBasisPoints) external onlyOwner { require(_newAdminFeeInBasisPoints <= HUNDRED_PERCENT, "basis points > 10000"); adminFeeInBasisPoints = _newAdminFeeInBasisPoints; emit AdminFeeUpdated(_newAdminFeeInBasisPoints); } /** * @notice used by the owner account to be able to drain ERC20 tokens received as airdrops * for the locked collateral NFT-s * @param _tokenAddress - address of the token contract for the token to be sent out * @param _receiver - receiver of the token */ function drainERC20Airdrop(address _tokenAddress, address _receiver) external onlyOwner { IERC20 tokenContract = IERC20(_tokenAddress); uint256 amount = tokenContract.balanceOf(address(this)); IERC20(_tokenAddress).safeTransfer(_receiver, amount); } /** * @notice This function can be called by admins to change the permitted status of an ERC20 currency. This includes * both adding an ERC20 currency to the permitted list and removing it. * * @param _erc20 - The address of the ERC20 currency whose permit list status changed. * @param _permit - The new status of whether the currency is permitted or not. */ function setERC20Permit(address _erc20, bool _permit) external onlyOwner { _setERC20Permit(_erc20, _permit); } /** * @notice This function changes the permitted list status of an NFT contract. This includes both adding an NFT * contract to the permitted list and removing it. * @param _nftContract - The address of the NFT contract. * @param _isPermitted - true - enable / false - disable */ function setNFTPermit(address _nftContract, bool _isPermitted) external onlyOwner { require(_nftContract != address(0), "Invalid nft address"); nftPermits[_nftContract] = _isPermitted; } /** * @notice used by the owner account to be able to drain ERC721 tokens received as airdrops * for the locked collateral NFT-s * @param _tokenAddress - address of the token contract for the token to be sent out * @param _tokenId - id token to be sent out * @param _receiver - receiver of the token */ function drainERC721Airdrop(address _tokenAddress, uint256 _tokenId, address _receiver) external onlyOwner { require(_escrowTokens[_tokenAddress][_tokenId] == 0, "token is collateral"); IERC721(_tokenAddress).transferFrom(address(this), _receiver, _tokenId); } /** * @dev makes possible to change loan duration and max repayment amount, loan duration even can be extended if * loan was expired but not liquidated. * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _signature - The components of the lender's signature. * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _expiry - The date when the renegotiation offer expires * - address of this contract * - chainId */ function renegotiateLoan( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, Signature calldata _signature ) external whenNotPaused nonReentrant { _renegotiateLoan(_loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, _signature); } /** * @notice This function is called by a anyone to repay a loan. It can be called at any time after the loan has * begun and before loan expiry.. The caller will pay a pro-rata portion of their interest if the loan is paid off * early and the loan is pro-rated type, but the complete repayment amount if it is fixed type. * The the borrower (current owner of the obligation note) will get the collaterl NFT back. * * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause the * contract and hold hostage the NFT's that are still within it. * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. */ function payBackLoan(bytes32 _loanId) external whenNotPaused nonReentrant { LoanChecksAndCalculations.payBackChecks(_loanId); (address borrower, address lender, LoanTerms memory loan) = _getPartiesAndData(_loanId); _payBackLoan(_loanId, borrower, lender, loan); _resolveLoan(_loanId, borrower, loan); // Delete the loan from storage in order to achieve a substantial gas savings and to lessen the burden of // storage on Ethereum nodes, since we will never access this loan's details again, and the details are still // available through event data. delete loanIdToLoan[_loanId]; } /** * @notice This function is called by a lender once a loan has finished its duration and the borrower still has not * repaid. The lender can call this function to seize the underlying NFT collateral, although the lender gives up * all rights to the principal-plus-collateral by doing so. * * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause * the contract and hold hostage the NFT's that are still within it. * * We intentionally allow anybody to call this function, although only the lender will end up receiving the seized * collateral. We are exploring the possbility of incentivizing users to call this function by using some of the * admin funds. * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. * * emit {LoanLiquidated} event */ function liquidateOverdueLoan(bytes32 _loanId) external whenNotPaused nonReentrant { // Sanity check that payBackLoan() and liquidateOverdueLoan() have never been called on this loanId. // Depending on how the rest of the code turns out, this check may be unnecessary. LoanChecksAndCalculations.checkLoanIdValidity(_loanId); (address borrower, address lender, LoanTerms memory loan) = _getPartiesAndData(_loanId); // Ensure that the loan is indeed overdue, since we can only liquidate overdue loans. uint256 loanMaturityDate = uint256(loan.loanStartTime) + uint256(loan.duration); require(block.timestamp > loanMaturityDate, "Loan is not overdue yet"); if (loan.useLendingPool) { require(ILendingPool(lender).isAdmin(msg.sender), "Only Lending pool admin can liquidate"); } else { require(msg.sender == lender, "Only lender can liquidate"); } _resolveLoan(_loanId, lender, loan); // Emit an event with all relevant details from this transaction. emit LoanLiquidated(_loanId, borrower, lender, loan.principalAmount, loan.nftCollateralId, loanMaturityDate, block.timestamp, loan.nftCollateralContract); // Delete the loan from storage in order to achieve a substantial gas savings and to lessen the burden of // storage on Ethereum nodes, since we will never access this loan's details again, and the details are still // available through event data. delete loanIdToLoan[_loanId]; } /** * @notice This function can be called by either a lender or a borrower to cancel all off-chain orders that they * have signed that contain this nonce. If the off-chain orders were created correctly, there should only be one * off-chain order that contains this nonce at all. * * The nonce referred to here is not the same as an Ethereum account's nonce. We are referring * instead to nonces that are used by both the lender and the borrower when they are first signing off-chain Loan * orders. These nonces can be any uint256 value that the user has not previously used to sign an off-chain order. * Each nonce can be used at most once per user within Loan, regardless of whether they are the lender or the * borrower in that situation. This serves two purposes. First, it prevents replay attacks where an attacker would * submit a user's off-chain order more than once. Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * * @param _nonce - User nonce */ function cancelLoanCommitmentBeforeLoanHasBegun(uint256 _nonce) external whenNotPaused { require(!_nonceHasBeenUsedForUser[msg.sender][_nonce], "Invalid nonce"); _nonceHasBeenUsedForUser[msg.sender][_nonce] = true; } /* ******************* */ /* READ-ONLY FUNCTIONS */ /* ******************* */ /** * @notice This function can be used to view whether a particular nonce for a particular user has already been used, * either from a successful loan or a cancelled off-chain order. * * @param _user - The address of the user. This function works for both lenders and borrowers alike. * @param _nonce - The nonce referred to here is not the same as an Ethereum account's nonce. We are referring * instead to nonces that are used by both the lender and the borrower when they are first signing off-chain * Loan orders. These nonces can be any uint256 value that the user has not previously used to sign an off-chain * order. Each nonce can be used at most once per user within Loan, regardless of whether they are the lender or * the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * * @return A bool representing whether or not this nonce has been used for this user. */ function getWhetherNonceHasBeenUsedForUser(address _user, uint256 _nonce) external view override returns (bool) { return _nonceHasBeenUsedForUser[_user][_nonce]; } /** * @notice This function can be called by anyone to get the permit associated with the erc20 contract. * * @param _erc20 - The address of the erc20 contract. * * @return Returns whether the erc20 is permitted */ function getERC20Permit(address _erc20) public view returns (bool) { return erc20Permits[_erc20]; } /** * @notice This function can be called by anyone to get the permit associated with the erc20 contract. * * @param _nftContract - The address of the NFT contract. * * @return Returns whether the erc20 is permitted */ function getNftPermit(address _nftContract) public view returns (bool) { return nftPermits[_nftContract]; } /* ****************** */ /* INTERNAL FUNCTIONS */ /* ****************** */ /** * @dev makes possible to change loan duration and max repayment amount, loan duration even can be extended if * loan was expired but not liquidated. IMPORTANT: Frontend will have to propt the caller to do an ERC20 approve for * the fee amount from themselves (borrower/obligation reciept holder) to the lender (promissory note holder) * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in loan denomination that borrower pays for the lender and * the admin for the renegotiation, has to be paid with an ERC20 transfer erc20Denomination token, * uses transfer from, frontend will have to propmt an erc20 approve for this from the borrower to the lender, * admin fee is calculated by the loan's adminFeeInBasisPoints value * @param _signature - The components of the lender's signature. * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _expiry - The date when the renegotiation offer expires * - address of this contract * - chainId * * emit {LoanRenegotiated} event */ function _renegotiateLoan( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, Signature calldata _signature ) internal { LoanTerms storage loan = loanIdToLoan[_loanId]; (address borrower, address lender) = LoanChecksAndCalculations.renegotiationChecks(loan, _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _signature.nonce); _nonceHasBeenUsedForUser[lender][_signature.nonce] = true; require( NFTfiSigningUtils.isValidLenderRenegotiationSignature( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, loan, _signature ), "Renegotiation signature is invalid" ); uint256 renegotiationAdminFee = 0; /** * @notice Transfers fee to the lender immediately * @dev implements Checks-Effects-Interactions pattern by modifying state only after * the transfer happened successfully, we also add the nonReentrant modifier to * the pbulic versions */ if (_renegotiationFee > 0) { renegotiationAdminFee = LoanChecksAndCalculations.computeAdminFee(_renegotiationFee, loan.adminFeeInBasisPoints); // Transfer principal-plus-interest-minus-fees from the caller (always has to be borrower) to lender IERC20(loan.erc20Denomination).safeTransferFrom(borrower, lender, _renegotiationFee - renegotiationAdminFee); // Transfer fees from the caller (always has to be borrower) to admins IERC20(loan.erc20Denomination).safeTransferFrom(borrower, owner(), renegotiationAdminFee); } loan.duration = _newLoanDuration; loan.maximumRepaymentAmount = _newMaximumRepaymentAmount; emit LoanRenegotiated(_loanId, borrower, lender, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, renegotiationAdminFee); } /** * @dev Transfer collateral NFT from borrower to this contract and principal from lender to the borrower and * registers the new loan through the loan coordinator. * * @param _loanTerms - Struct containing the loan's settings * @param _lender - The address of the lender. * that there is no referrer. */ function _createLoan(bytes32 _loanId, LoanTerms memory _loanTerms, address _borrower, address _lender) internal { // Transfer collateral from borrower to this contract to be held until // loan completion. _transferNFT(_loanTerms, _borrower, address(this)); _createLoanNoNftTransfer(_loanId, _loanTerms, _borrower, _lender); } /** * @dev Transfer principal from lender to the borrower and * registers the new loan through the loan coordinator. * * @param _loanTerms - Struct containing the loan's settings * @param _lender - The address of the lender. * that there is no referrer. */ function _createLoanNoNftTransfer(bytes32 _loanId, LoanTerms memory _loanTerms, address _borrower, address _lender) internal { _escrowTokens[_loanTerms.nftCollateralContract][_loanTerms.nftCollateralId] += 1; // Transfer principal from lender to borrower. if (_loanTerms.useLendingPool) { ILendingPool(_loanTerms.lender).informDisburse(_loanTerms.erc20Denomination, _borrower, _loanTerms.principalAmount); } else { IERC20(_loanTerms.erc20Denomination).safeTransferFrom(_lender, _borrower, _loanTerms.principalAmount); } // Add the loan to storage before moving collateral/principal to follow // the Checks-Effects-Interactions pattern. loanIdToLoan[_loanId] = _loanTerms; } /** * @dev Transfers several types of NFTs using a wrapper that knows how to handle each case. * * @param _loanTerms - Struct containing all the loan's parameters * @param _sender - Current owner of the NFT * @param _recipient - Recipient of the transfer */ function _transferNFT(LoanTerms memory _loanTerms, address _sender, address _recipient) internal { IERC721(_loanTerms.nftCollateralContract).safeTransferFrom(_sender, _recipient, _loanTerms.nftCollateralId, ""); } /** * @notice This function is called by a anyone to repay a loan. It can be called at any time after the loan has * begun and before loan expiry.. The caller will pay a pro-rata portion of their interest if the loan is paid off * early and the loan is pro-rated type, but the complete repayment amount if it is fixed type. * The the borrower (current owner of the obligation note) will get the collaterl NFT back. * * This function is purposefully not pausable in order to prevent an attack where the contract admin's pause the * contract and hold hostage the NFT's that are still within it. * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. * * emit {LoanRepaid} event */ function _payBackLoan(bytes32 _loanId, address _borrower, address _lender, LoanTerms memory _loan) internal { (uint256 adminFee, uint256 payoffAmount) = _payoffAndFee(_loan); // Transfer principal-plus-interest-minus-fees from the caller to lender IERC20(_loan.erc20Denomination).safeTransferFrom(msg.sender, _lender, payoffAmount); if (_loan.useLendingPool) { ILendingPool(_lender).informPayBack(_loan.erc20Denomination, _loan.principalAmount); } // Transfer fees from the caller to admins IERC20(_loan.erc20Denomination).safeTransferFrom(msg.sender, owner(), adminFee); // Emit an event with all relevant details from this transaction. emit LoanRepaid( _loanId, _borrower, _lender, _loan.principalAmount, _loan.nftCollateralId, payoffAmount, adminFee, payoffAmount - _loan.principalAmount, _loan.nftCollateralContract, _loan.erc20Denomination ); } /** * @notice A convenience function with shared functionality between `payBackLoan` and `liquidateOverdueLoan`. * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param _nftReceiver - The receiver of the collateral nft. The borrower when `payBackLoan` or the lender when * `liquidateOverdueLoan`. * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan. */ function _resolveLoan(bytes32 _loanId, address _nftReceiver, LoanTerms memory _loanTerms) internal { _resolveLoanNoNftTransfer(_loanId, _loanTerms); // Transfer collateral from this contract to the lender, since the lender is seizing collateral for an overdue // loan _transferNFT(_loanTerms, address(this), _nftReceiver); } /** * @notice Resolving the loan without trasferring the nft to provide a base for the bundle * break up of the bundled loans * * @param _loanId A unique identifier for this particular loan, sourced from the Loan Coordinator. * @param _loanTerms - The main Loan Terms struct. This data is saved upon loan creation on loanIdToLoan. */ function _resolveLoanNoNftTransfer(bytes32 _loanId, LoanTerms memory _loanTerms) internal { // Mark loan as liquidated before doing any external transfers to follow the Checks-Effects-Interactions design // pattern loanRepaidOrLiquidated[_loanId] = true; _escrowTokens[_loanTerms.nftCollateralContract][_loanTerms.nftCollateralId] -= 1; } /** * @notice This function can be called by admins to change the permitted status of an ERC20 currency. This includes * both adding an ERC20 currency to the permitted list and removing it. * * @param _erc20 - The address of the ERC20 currency whose permit list status changed. * @param _permit - The new status of whether the currency is permitted or not. * * emit {ERC20Permit} event */ function _setERC20Permit(address _erc20, bool _permit) internal { require(_erc20 != address(0), "erc20 is zero address"); erc20Permits[_erc20] = _permit; emit ERC20Permit(_erc20, _permit); } /** * @dev Performs some validation checks over loan parameters * */ function _loanSanityChecks(Offer memory _offer) internal view { require(getERC20Permit(_offer.erc20Denomination), "Currency denomination is not permitted"); require(nftPermits[_offer.nftCollateralContract], "NFT collateral contract is not permitted"); require(uint256(_offer.duration) <= maximumLoanDuration, "Loan duration exceeds maximum loan duration"); require(uint256(_offer.duration) != 0, "Loan duration cannot be zero"); require(_offer.adminFeeInBasisPoints == adminFeeInBasisPoints, "The admin fee has changed since this order was signed."); } /** * @dev reads some variable values of a loan for payback functions, created to reduce code repetition */ function _getPartiesAndData(bytes32 _loanId) internal view returns (address borrower, address lender, LoanTerms memory loan) { // Fetch loan details from storage, but store them in memory for the sake of saving gas. loan = loanIdToLoan[_loanId]; borrower = loan.borrower; lender = loan.lender; } /** * @dev Calculates the payoff amount and admin fee */ function _payoffAndFee(LoanTerms memory _loanTerms) internal view virtual returns (uint256, uint256); /** * @dev Check valid loan ID */ function isValidLoanId(bytes32 _loanId) public view returns (bool) { return loanIdToLoan[_loanId].borrower != address(0); } }
File 42 of 59: contracts/loans/utils/NFTfiSigningUtilsContract.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {NFTfiSigningUtils, LoanData} from "./NFTfiSigningUtils.sol"; /** * @title NFTfiSigningUtilsContract * @notice Helper contract for Loan. This contract manages externally verifying signatures from off-chain Loan orders. */ contract NFTfiSigningUtilsContract { /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @notice This function is when the borrower accepts a lender's offer, to validate the lender's signature that the * lender provided off-chain to verify that it did indeed made such offer. * * @param _offer - The offer struct containing: * - erc20Denomination: The address of the ERC20 contract of the currency being used as principal/interest * for this loan. * - principalAmount: The original sum of money transferred from lender to borrower at the beginning of * the loan, measured in erc20Denomination's smallest units. * - maximumRepaymentAmount: The maximum amount of money that the borrower would be required to retrieve their * collateral, measured in the smallest units of the ERC20 currency used for the loan. The borrower will always have * to pay this amount to retrieve their collateral, regardless of whether they repay early. * - nftCollateralContract: The address of the ERC721 contract of the NFT collateral. * - nftCollateralId: The ID within the NFTCollateralContract for the NFT being used as collateral for this * loan. The NFT is stored within this contract during the duration of the loan. * - referrer: The address of the referrer who found the lender matching the listing, Zero address to signal * this there is no referrer. * - duration: The amount of time (measured in seconds) that can elapse before the lender can liquidate the * loan and seize the underlying collateral NFT. * - adminFeeInBasisPoints: The percent (measured in basis points) of the interest earned that will be * taken as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling * Loan.cancelLoanCommitmentBeforeLoanHasBegun(), which marks the nonce as used and prevents any future loan from * using the user's off-chain order that contains that nonce. * - expiry: Date when the signature expires * - signature: The ECDSA signature of the lender, obtained off-chain ahead of time, signing the following * combination of parameters: * - offer.erc20Denomination * - offer.principalAmount * - offer.maximumRepaymentAmount * - offer.nftCollateralContract * - offer.nftCollateralId * - offer.duration * - offer.adminFeeInBasisPoints * - signature.signer, * - signature.nonce, * - signature.expiry, * - loan contract address, * - chainId * @param _loanContract - Address of the loan contract where the signature is going to be used */ function isValidLenderSignature( LoanData.Offer memory _offer, LoanData.Signature memory _signature, address _loanContract ) external view returns (bool) { return NFTfiSigningUtils.isValidLenderSignature(_offer, _signature, _loanContract); } /** * @notice This function is called in renegotiateLoan() to validate the lender's signature that the lender provided * off-chain to verify that they did indeed want to agree to this loan renegotiation according to these terms. * * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _renegotiationFee Agreed upon fee in ether that borrower pays for the lender for the renegitiation * @param _loan The current loan data * @param _signature - The signature structure containing: * - signer: The address of the signer. The borrower for `acceptOffer` the lender for `acceptListing`. * - nonce: The nonce referred here is not the same as an Ethereum account's nonce. * We are referring instead to a nonce that is used by the lender or the borrower when they are first signing * off-chain Loan orders. These nonce can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() * , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * - expiry - The date when the renegotiation offer expires * - lenderSignature - The ECDSA signature of the lender, obtained off-chain ahead of time, signing the * following combination of parameters: * - _loanId * - _newLoanDuration * - _newMaximumRepaymentAmount * - _lender * - _lenderNonce * - _expiry * - loan contract address, * - chainId * @param _loanContract - Address of the loan contract where the signature is going to be used */ function isValidLenderRenegotiationSignature( bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _renegotiationFee, LoanData.LoanTerms memory _loan, LoanData.Signature memory _signature, address _loanContract ) external view returns (bool) { return NFTfiSigningUtils.isValidLenderRenegotiationSignature( _loanId, _newLoanDuration, _newMaximumRepaymentAmount, _renegotiationFee, _loan, _signature, _loanContract ); } }
File 43 of 59: @openzeppelin/contracts/utils/Pausable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { bool private _paused; /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
File 44 of 59: @openzeppelin/contracts/token/ERC20/ERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance < type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
File 45 of 59: contracts/utils/TransferHelper.sol
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.28; library TransferHelper { error TransferNativeFailed(); /// @notice Transfers Native token to the recipient address /// @dev Fails with error `TransferNativeFailed` /// @param to The destination of the transfer /// @param value The value to be transferred function safeTransferNative(address to, uint256 value) internal { (bool success, ) = to.call{value: value}(new bytes(0)); if (!success) { revert TransferNativeFailed(); } } }
File 46 of 59: @openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/utils/ERC721Holder.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; /** * @dev Implementation of the {IERC721Receiver} interface. * * Accepts all token transfers. * Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or * {IERC721-setApprovalForAll}. */ abstract contract ERC721Holder is IERC721Receiver { /** * @dev See {IERC721Receiver-onERC721Received}. * * Always returns `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) { return this.onERC721Received.selector; } }
File 47 of 59: @openzeppelin/contracts/utils/structs/EnumerableSet.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; assembly ("memory-safe") { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly ("memory-safe") { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly ("memory-safe") { result := store } return result; } }
File 48 of 59: @openzeppelin/contracts/access/Ownable.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
File 49 of 59: contracts/Marketplace/Marketplace.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol"; import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {TransferHelper} from "../utils/TransferHelper.sol"; import {Permission, Ownable} from "../utils/Permission.sol"; import {IMarketplace} from "./IMarketplace.sol"; contract Marketplace is IMarketplace, Permission, ReentrancyGuard, ERC721Holder { using SafeERC20 for IERC20; address public feeReceiver; uint256 public feePercent; uint256 public itemCount; // Permitted payments token for marketplace mapping(address => bool) public paymentToken; struct Item { uint256 itemId; address nft; uint256 tokenId; uint256 price; address paymentToken; address seller; address beneficiary; ItemStatus status; } // Market item info mapped by item id mapping(uint256 => Item) public items; event MakeItem(uint256 indexed itemId, Item item); event BoughtItem(uint256 indexed itemId, address indexed buyer); event ClosedItem(uint256 indexed itemId); event SetPaymentToken(address indexed token, bool allow); event SetFeeReceiver(address indexed oldValue, address indexed newValue); event SetFeePercent(uint256 indexed oldValue, uint256 indexed newValue); constructor(address _initialOwner, address _feeReceiver, uint256 _feePercent) Ownable(_initialOwner) { feeReceiver = _feeReceiver; feePercent = _feePercent; } function makeItem(address _nft, uint256 _tokenId, address _paymentToken, uint256 _price, address _beneficiary) external { if (_nft == address(0)) revert InvalidNft(); if (!paymentToken[_paymentToken]) revert NotPermittedToken(); if (_price == 0) revert InvalidPrice(); if (_beneficiary == address(0)) revert InvalidBeneficiary(); itemCount++; items[itemCount] = Item(itemCount, _nft, _tokenId, _price, _paymentToken, _msgSender(), _beneficiary, ItemStatus.OPENING); IERC721(_nft).transferFrom(_msgSender(), address(this), _tokenId); emit MakeItem(itemCount, items[itemCount]); } function purchaseItem(uint256 _itemId) external payable nonReentrant { Item storage item = items[_itemId]; if (item.itemId == 0) revert NotExistedItem(); if (item.status != ItemStatus.OPENING) revert NotOpeningItem(); item.status = ItemStatus.SOLD; // transfer sold token to beneficiary address uint256 marketFee = (item.price * feePercent) / 10000; uint256 receivedAmount = item.price - marketFee; if (item.paymentToken == address(0)) { if (msg.value != item.price) revert NotEnougnETH(); if (marketFee > 0) { TransferHelper.safeTransferNative(feeReceiver, marketFee); } TransferHelper.safeTransferNative(item.beneficiary, receivedAmount); } else { if (marketFee > 0) { IERC20(item.paymentToken).safeTransferFrom(_msgSender(), feeReceiver, marketFee); } IERC20(item.paymentToken).safeTransferFrom(_msgSender(), item.beneficiary, receivedAmount); } // transfer nft to buyer IERC721(item.nft).transferFrom(address(this), _msgSender(), item.tokenId); emit BoughtItem(item.itemId, _msgSender()); } function closeItem(uint256 _itemId) external { Item storage item = items[_itemId]; if (item.itemId == 0) revert NotExistedItem(); if (item.status != ItemStatus.OPENING) revert NotOpeningItem(); if (item.seller != _msgSender()) revert OnlyItemOwner(); item.status = ItemStatus.CLOSED; // transfer nft to buyer IERC721(item.nft).transferFrom(address(this), _msgSender(), item.tokenId); emit ClosedItem(_itemId); } function setPaymentToken(address _token, bool allow) external onlyAdmin { paymentToken[_token] = allow; emit SetPaymentToken(_token, allow); } function setFeeReceiver(address _feeReceiver) external onlyAdmin { if (_feeReceiver == address(0)) revert InvalidFeeReceiver(); address oldValue = feeReceiver; feeReceiver = _feeReceiver; emit SetFeeReceiver(oldValue, _feeReceiver); } function setFeePercent(uint256 _newValue) external onlyAdmin { if (_newValue > 10000) revert InvalidFeePercent(); uint256 oldValue = feePercent; feePercent = _newValue; emit SetFeePercent(oldValue, _newValue); } }
File 50 of 59: @openzeppelin/contracts/utils/Create2.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev There's no code to deploy. */ error Create2EmptyBytecode(); /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } if (bytecode.length == 0) { revert Create2EmptyBytecode(); } assembly ("memory-safe") { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) // if no address was created, and returndata is not empty, bubble revert if and(iszero(addr), not(iszero(returndatasize()))) { let p := mload(0x40) returndatacopy(p, 0, returndatasize()) revert(p, returndatasize()) } } if (addr == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) { assembly ("memory-safe") { let ptr := mload(0x40) // Get free memory pointer // | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... | // |-------------------|---------------------------------------------------------------------------| // | bytecodeHash | CCCCCCCCCCCCC...CC | // | salt | BBBBBBBBBBBBB...BB | // | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA | // | 0xFF | FF | // |-------------------|---------------------------------------------------------------------------| // | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC | // | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | mstore(add(ptr, 0x40), bytecodeHash) mstore(add(ptr, 0x20), salt) mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff mstore8(start, 0xff) addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff) } } }
File 51 of 59: @openzeppelin/contracts/utils/Errors.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
File 52 of 59: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
File 53 of 59: contracts/loans/direct/LoanChecksAndCalculations.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import {IDirectLoanBase} from "./IDirectLoanBase.sol"; import {LoanData} from "./LoanData.sol"; /** * @title LoanChecksAndCalculations * @notice Helper library for LoanBase */ library LoanChecksAndCalculations { /* ******* */ /* STORAGE */ /* ******* */ uint16 private constant HUNDRED_PERCENT = 10000; /* ********* */ /* FUNCTIONS */ /* ********* */ /** * @notice Function that performs some validation checks before trying to repay a loan * @dev Everyone can call * @param _loanId - The id of the loan being repaid */ function payBackChecks(bytes32 _loanId) external view { // Sanity check that payBackLoan() and liquidateOverdueLoan() have never been called on this loanId. // Depending on how the rest of the code turns out, this check may be unnecessary. checkLoanIdValidity(_loanId); // Fetch loan details from storage, but store them in memory for the sake of saving gas. (, , , , uint32 duration, , uint64 loanStartTime, , , , ) = IDirectLoanBase(address(this)).loanIdToLoan( _loanId ); // When a loan exceeds the loan term, it is expired. At this stage the Lender can call Liquidate Loan to resolve // the loan. require(block.timestamp <= (uint256(loanStartTime) + uint256(duration)), "Loan is expired"); } /** * @notice check loan's id is valid or not * @dev Everyone can call * @param _loanId Id of loan */ function checkLoanIdValidity(bytes32 _loanId) public view { require(!IDirectLoanBase(address(this)).loanRepaidOrLiquidated(_loanId), "Loan already repaid/liquidated"); require(IDirectLoanBase(address(this)).isValidLoanId(_loanId), "None existed loan ID"); } /** * @dev Performs some validation checks before trying to renegotiate a loan. * Needed to avoid stack too deep. * * @param _loan - The main Loan Terms struct. * @param _loanId - The unique identifier for the loan to be renegotiated * @param _newLoanDuration - The new amount of time (measured in seconds) that can elapse before the lender can * liquidate the loan and seize the underlying collateral NFT. * @param _newMaximumRepaymentAmount - The new maximum amount of money that the borrower would be required to * retrieve their collateral, measured in the smallest units of the ERC20 currency used for the loan. The * borrower will always have to pay this amount to retrieve their collateral, regardless of whether they repay * early. * @param _lenderNonce - The nonce referred to here is not the same as an Ethereum account's nonce. We are * referring instead to nonces that are used by both the lender and the borrower when they are first signing * off-chain Loan orders. These nonces can be any uint256 value that the user has not previously used to sign an * off-chain order. Each nonce can be used at most once per user within Loan, regardless of whether they are the * lender or the borrower in that situation. This serves two purposes: * - First, it prevents replay attacks where an attacker would submit a user's off-chain order more than once. * - Second, it allows a user to cancel an off-chain order by calling Loan.cancelLoanCommitmentBeforeLoanHasBegun() , which marks the nonce as used and prevents any future loan from using the user's off-chain order that contains * that nonce. * @return Borrower and Lender addresses */ function renegotiationChecks( LoanData.LoanTerms memory _loan, bytes32 _loanId, uint32 _newLoanDuration, uint256 _newMaximumRepaymentAmount, uint256 _lenderNonce ) external view returns (address, address) { checkLoanIdValidity(_loanId); require(msg.sender == _loan.borrower, "Only borrower can initiate"); require(block.timestamp <= (uint256(_loan.loanStartTime) + _newLoanDuration), "New duration already expired"); require( uint256(_newLoanDuration) <= IDirectLoanBase(address(this)).maximumLoanDuration(), "New duration exceeds maximum loan duration" ); require(_newMaximumRepaymentAmount >= _loan.principalAmount, "Negative interest rate loans are not allowed"); require( !IDirectLoanBase(address(this)).getWhetherNonceHasBeenUsedForUser(_loan.lender, _lenderNonce), "Lender nonce invalid" ); return (_loan.borrower, _loan.lender); } /** * @notice A convenience function computing the adminFee taken from a specified quantity of interest. * * @param _interestDue - The amount of interest due, measured in the smallest quantity of the ERC20 currency being * used to pay the interest. * @param _adminFeeInBasisPoints - The percent (measured in basis points) of the interest earned that will be taken * as a fee by the contract admins when the loan is repaid. The fee is stored in the loan struct to prevent an * attack where the contract admins could adjust the fee right before a loan is repaid, and take all of the interest * earned. * * @return The quantity of ERC20 currency (measured in smalled units of that ERC20 currency) that is due as an admin * fee. */ function computeAdminFee(uint256 _interestDue, uint256 _adminFeeInBasisPoints) external pure returns (uint256) { return (_interestDue * _adminFeeInBasisPoints) / HUNDRED_PERCENT; } }
File 54 of 59: contracts/TokenBoundAccount/interfaces/ITokenBoundAccountRegistry.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; interface ITokenBoundAccountRegistry { event AccountCreated( address account, address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 salt ); function createAccount( address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 seed ) external returns (address); function account( address implementation, uint256 chainId, address tokenContract, uint256 tokenId, uint256 salt ) external view returns (address); }
File 55 of 59: @openzeppelin/contracts/interfaces/IERC1271.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
File 56 of 59: @openzeppelin/contracts/utils/introspection/ERC165.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
File 57 of 59: @openzeppelin/contracts/token/ERC20/IERC20.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
File 58 of 59: contracts/LendingPool/interfaces/ILendingPool.sol
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /** * @title Lending Pool Interface * */ interface ILendingPool { function informDisburse(address _token, address _to, uint256 _amount) external; function informPayBack(address _token, uint256 _principal) external; function approveToPayRewards(address _token, uint256 _amount) external; function isAdmin(address _account) external view returns (bool); function owner() external view returns (address); }
File 59 of 59: @openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
Derleyici Ayarları
{"outputSelection":{"*":{"*":["*"],"":["*"]}},"optimizer":{"runs":200,"enabled":true},"libraries":{},"evmVersion":"paris"}
Sözleşme ABI
[{"type":"constructor","stateMutability":"nonpayable","inputs":[{"type":"address","name":"_initialOwner","internalType":"address"}]},{"type":"error","name":"AdminUnauthorizedAccount","inputs":[{"type":"address","name":"account","internalType":"address"}]},{"type":"error","name":"EnforcedPause","inputs":[]},{"type":"error","name":"ExpectedPause","inputs":[]},{"type":"error","name":"InvalidAddress","inputs":[]},{"type":"error","name":"InvalidLength","inputs":[]},{"type":"error","name":"OwnableInvalidOwner","inputs":[{"type":"address","name":"owner","internalType":"address"}]},{"type":"error","name":"OwnableUnauthorizedAccount","inputs":[{"type":"address","name":"account","internalType":"address"}]},{"type":"error","name":"PermissionUnauthorizedAccount","inputs":[{"type":"address","name":"account","internalType":"address"}]},{"type":"error","name":"ReentrancyGuardReentrantCall","inputs":[]},{"type":"error","name":"SafeERC20FailedOperation","inputs":[{"type":"address","name":"token","internalType":"address"}]},{"type":"event","name":"Disbursed","inputs":[{"type":"address","name":"token","internalType":"address","indexed":true},{"type":"address","name":"to","internalType":"address","indexed":true},{"type":"uint256","name":"amount","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"ListNftToMarket","inputs":[{"type":"address","name":"nftContract","internalType":"address","indexed":true},{"type":"uint256","name":"nftTokenId","internalType":"uint256","indexed":true},{"type":"uint256","name":"price","internalType":"uint256","indexed":true}],"anonymous":false},{"type":"event","name":"OwnershipTransferred","inputs":[{"type":"address","name":"previousOwner","internalType":"address","indexed":true},{"type":"address","name":"newOwner","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"PaidBack","inputs":[{"type":"address","name":"token","internalType":"address","indexed":true},{"type":"uint256","name":"amount","internalType":"uint256","indexed":false}],"anonymous":false},{"type":"event","name":"Paused","inputs":[{"type":"address","name":"account","internalType":"address","indexed":false}],"anonymous":false},{"type":"event","name":"SetAdmin","inputs":[{"type":"address","name":"user","internalType":"address","indexed":true},{"type":"bool","name":"allow","internalType":"bool","indexed":false}],"anonymous":false},{"type":"event","name":"SetLendingStake","inputs":[{"type":"address","name":"oldValue","internalType":"address","indexed":true},{"type":"address","name":"newValue","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"SetLoan","inputs":[{"type":"address","name":"oldValue","internalType":"address","indexed":true},{"type":"address","name":"newValue","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"SetMarketplace","inputs":[{"type":"address","name":"oldValue","internalType":"address","indexed":true},{"type":"address","name":"newValue","internalType":"address","indexed":true}],"anonymous":false},{"type":"event","name":"Unpaused","inputs":[{"type":"address","name":"account","internalType":"address","indexed":false}],"anonymous":false},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"admins","inputs":[{"type":"address","name":"","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"approveToPayRewards","inputs":[{"type":"address","name":"_token","internalType":"address"},{"type":"uint256","name":"_amount","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"informDisburse","inputs":[{"type":"address","name":"_token","internalType":"address"},{"type":"address","name":"_to","internalType":"address"},{"type":"uint256","name":"_amount","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"informPayBack","inputs":[{"type":"address","name":"_token","internalType":"address"},{"type":"uint256","name":"_principal","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"isAdmin","inputs":[{"type":"address","name":"_account","internalType":"address"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"lendingStake","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"listNftToMarket","inputs":[{"type":"address","name":"_nftContract","internalType":"address"},{"type":"uint256","name":"_nftTokenId","internalType":"uint256"},{"type":"uint256","name":"_price","internalType":"uint256"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"loan","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"marketplace","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[{"type":"bytes4","name":"","internalType":"bytes4"}],"name":"onERC721Received","inputs":[{"type":"address","name":"","internalType":"address"},{"type":"address","name":"","internalType":"address"},{"type":"uint256","name":"","internalType":"uint256"},{"type":"bytes","name":"","internalType":"bytes"}]},{"type":"function","stateMutability":"view","outputs":[{"type":"address","name":"","internalType":"address"}],"name":"owner","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"pause","inputs":[]},{"type":"function","stateMutability":"view","outputs":[{"type":"bool","name":"","internalType":"bool"}],"name":"paused","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"renounceOwnership","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"rescueNft","inputs":[{"type":"address","name":"_nftContract","internalType":"address"},{"type":"uint256","name":"_nftTokenId","internalType":"uint256"},{"type":"address","name":"_to","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"rescueToken","inputs":[{"type":"address","name":"_token","internalType":"address"},{"type":"address","name":"_to","internalType":"address"},{"type":"uint256","name":"_amount","internalType":"uint256"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setAdmin","inputs":[{"type":"address","name":"_user","internalType":"address"},{"type":"bool","name":"_allow","internalType":"bool"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setAdmins","inputs":[{"type":"address[]","name":"_users","internalType":"address[]"},{"type":"bool","name":"_allow","internalType":"bool"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setLendingStake","inputs":[{"type":"address","name":"_lendingStake","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setLoan","inputs":[{"type":"address","name":"_loan","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"setMarketplace","inputs":[{"type":"address","name":"_marketplace","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"transferOwnership","inputs":[{"type":"address","name":"newOwner","internalType":"address"}]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"unpause","inputs":[]},{"type":"function","stateMutability":"nonpayable","outputs":[],"name":"withdrawNftFromMarket","inputs":[{"type":"uint256","name":"_marketItemId","internalType":"uint256"}]}]
Sözleşme Oluşturma Kodu
0x608060405234801561001057600080fd5b5060405161138238038061138283398101604081905261002f916100cd565b806001600160a01b03811661005e57604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b6100678161007d565b50506002805460ff1916905560016003556100fd565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000602082840312156100df57600080fd5b81516001600160a01b03811681146100f657600080fd5b9392505050565b6112768061010c6000396000f3fe608060405234801561001057600080fd5b50600436106101585760003560e01c806371f3cd0d116100c3578063b5d10df91161007c578063b5d10df9146102e7578063baecd77f146102fa578063c85396bf1461030d578063d285b7b414610320578063e5711e8b14610333578063f2fde38b1461034657600080fd5b806371f3cd0d1461026e57806373ad6c2d146102815780638456cb5914610294578063885ef2901461029c5780638da5cb5b146102af578063abc8c7af146102d457600080fd5b8063429b62e511610115578063429b62e5146101ff57806345f34952146102225780634b0bddd2146102355780635c975abb14610248578063633a645d14610253578063715018a61461026657600080fd5b8063030e2c881461015d578063087f010e14610172578063150b7a021461018557806324d7806c146101c15780633f4ba83a146101e457806341f7b092146101ec575b600080fd5b61017061016b366004610f01565b610359565b005b610170610180366004610fcd565b6103bf565b6101a3610193366004610ff1565b630a85bd0160e11b949350505050565b6040516001600160e01b031990911681526020015b60405180910390f35b6101d46101cf366004610fcd565b610440565b60405190151581526020016101b8565b610170610491565b6101706101fa366004610fcd565b6104ab565b6101d461020d366004610fcd565b60016020526000908152604090205460ff1681565b6101706102303660046110ba565b61052c565b6101706102433660046110ef565b6106f4565b60025460ff166101d4565b610170610261366004611128565b61070a565b610170610774565b61017061027c36600461116a565b610786565b61017061028f366004610fcd565b610845565b6101706108c6565b6101706102aa366004611196565b6108de565b6000546001600160a01b03165b6040516001600160a01b0390911681526020016101b8565b6006546102bc906001600160a01b031681565b6005546102bc906001600160a01b031681565b6101706103083660046111af565b61097d565b61017061031b36600461116a565b610a77565b6004546102bc906001600160a01b031681565b6101706103413660046111af565b610afa565b610170610354366004610fcd565b610b3d565b610361610b7b565b81516000036103835760405163251f56a160e21b815260040160405180910390fd5b60005b82518110156103ba576103b28382815181106103a4576103a46111f0565b602002602001015183610ba8565b600101610386565b505050565b6103c7610b7b565b6001600160a01b0381166103ee5760405163e6c4247b60e01b815260040160405180910390fd5b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f4cef211b36a7ba1e9f8e51e9570b3cf4ed7cb4ae4f0aa087b09ce4b567b59aa490600090a35050565b6000816001600160a01b031661045e6000546001600160a01b031690565b6001600160a01b0316148061048b57506001600160a01b03821660009081526001602052604090205460ff165b92915050565b610499610b7b565b6104a1610c2e565b6104a9610c51565b565b6104b3610b7b565b6001600160a01b0381166104da5760405163e6c4247b60e01b815260040160405180910390fd5b600480546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f2868942214ddba6cd1a9accf5649fef678605050ad1c3c01b33c361dcb4e9c6290600090a35050565b610534610ca3565b6000546001600160a01b0316331480159061055f57503360009081526001602052604090205460ff16155b1561059057335b60405163342e52ad60e21b81526001600160a01b0390911660048201526024015b60405180910390fd5b60065460405163095ea7b360e01b81526001600160a01b039182166004820152602481018490529084169063095ea7b390604401600060405180830381600087803b1580156105de57600080fd5b505af11580156105f2573d6000803e3d6000fd5b505060065460055460408051635b0cb9c560e11b815290516001600160a01b03938416955063f4bc9a8a945088938893169163b619738a9160048083019260209291908290030181865afa15801561064e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106729190611206565b60055460405160e086901b6001600160e01b03191681526001600160a01b039485166004820152602481019390935290831660448301526064820186905291909116608482015260a4015b600060405180830381600087803b1580156106d757600080fd5b505af11580156106eb573d6000803e3d6000fd5b50505050505050565b6106fc610b7b565b6107068282610ba8565b5050565b610712610b7b565b6001600160a01b0381166107395760405163e6c4247b60e01b815260040160405180910390fd5b6040516323b872dd60e01b81523060048201526001600160a01b038281166024830152604482018490528416906323b872dd906064016106bd565b61077c610b7b565b6104a96000610cc7565b61078e610ca3565b6005546001600160a01b03163381146107c857335b604051637e6f22d960e01b81526001600160a01b039091166004820152602401610587565b60055460405163095ea7b360e01b81526001600160a01b039182166004820152602481018490529084169063095ea7b3906044016020604051808303816000875af115801561081b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061083f9190611223565b50505050565b61084d610b7b565b6001600160a01b0381166108745760405163e6c4247b60e01b815260040160405180910390fd5b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f22122696dd612fc8f6a7ed06a9e60a22e7fbae0cb347b5f47ab0a148cb8b2d6090600090a35050565b6108ce610b7b565b6108d6610ca3565b6104a9610d17565b6108e6610ca3565b6000546001600160a01b0316331480159061091157503360009081526001602052604090205460ff16155b1561091c5733610566565b60065460405163c2a5cbf160e01b8152600481018390526001600160a01b039091169063c2a5cbf190602401600060405180830381600087803b15801561096257600080fd5b505af1158015610976573d6000803e3d6000fd5b5050505050565b610985610d54565b61098d610ca3565b6004546001600160a01b03163381146109a657336107a3565b600554604051632dd67e5560e21b8152600481018490526001600160a01b039091169063b759f95490602401600060405180830381600087803b1580156109ec57600080fd5b505af1158015610a00573d6000803e3d6000fd5b5050600554610a1f92506001600160a01b038781169250168585610d7e565b826001600160a01b0316846001600160a01b03167fd1fdb060ebcebbe0f64716e26e573d67fd29e5ec9229ba5da5d1c361f6ef980884604051610a6491815260200190565b60405180910390a3506103ba6001600355565b610a7f610ca3565b6004546001600160a01b0316338114610a9857336107a3565b600554610ab2906001600160a01b03858116911684610de5565b826001600160a01b03167f86752b2eca38ca0c907c0f8fbbaa11559477b8e72e307c8bdc26b7c7b495789283604051610aed91815260200190565b60405180910390a2505050565b610b02610b7b565b6001600160a01b038216610b295760405163e6c4247b60e01b815260040160405180910390fd5b6103ba6001600160a01b0384168383610de5565b610b45610b7b565b6001600160a01b038116610b6f57604051631e4fbdf760e01b815260006004820152602401610587565b610b7881610cc7565b50565b6000546001600160a01b031633146104a95760405163118cdaa760e01b8152336004820152602401610587565b6001600160a01b038216610bcf5760405163e6c4247b60e01b815260040160405180910390fd5b6001600160a01b038216600081815260016020908152604091829020805460ff191685151590811790915591519182527f55a5194bc0174fcaf12b2978bef43911466bf63b34db8d1dd1a0d5dcd5c41bea910160405180910390a25050565b60025460ff166104a957604051638dfc202b60e01b815260040160405180910390fd5b610c59610c2e565b6002805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b60025460ff16156104a95760405163d93c066560e01b815260040160405180910390fd5b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b610d1f610ca3565b6002805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610c863390565b600260035403610d7757604051633ee5aeb560e01b815260040160405180910390fd5b6002600355565b6040516001600160a01b03848116602483015283811660448301526064820183905261083f9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050610e16565b6040516001600160a01b038381166024830152604482018390526103ba91859182169063a9059cbb90606401610db3565b600080602060008451602086016000885af180610e39576040513d6000823e3d81fd5b50506000513d91508115610e51578060011415610e5e565b6001600160a01b0384163b155b1561083f57604051635274afe760e01b81526001600160a01b0385166004820152602401610587565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff81118282101715610ec657610ec6610e87565b604052919050565b6001600160a01b0381168114610b7857600080fd5b8015158114610b7857600080fd5b8035610efc81610ee3565b919050565b60008060408385031215610f1457600080fd5b823567ffffffffffffffff811115610f2b57600080fd5b8301601f81018513610f3c57600080fd5b803567ffffffffffffffff811115610f5657610f56610e87565b8060051b610f6660208201610e9d565b91825260208184018101929081019088841115610f8257600080fd5b6020850194505b83851015610fb05784359250610f9e83610ece565b82825260209485019490910190610f89565b8096505050505050610fc460208401610ef1565b90509250929050565b600060208284031215610fdf57600080fd5b8135610fea81610ece565b9392505050565b6000806000806080858703121561100757600080fd5b843561101281610ece565b9350602085013561102281610ece565b925060408501359150606085013567ffffffffffffffff81111561104557600080fd5b8501601f8101871361105657600080fd5b803567ffffffffffffffff81111561107057611070610e87565b611083601f8201601f1916602001610e9d565b81815288602083850101111561109857600080fd5b8160208401602083013760006020838301015280935050505092959194509250565b6000806000606084860312156110cf57600080fd5b83356110da81610ece565b95602085013595506040909401359392505050565b6000806040838503121561110257600080fd5b823561110d81610ece565b9150602083013561111d81610ee3565b809150509250929050565b60008060006060848603121561113d57600080fd5b833561114881610ece565b925060208401359150604084013561115f81610ece565b809150509250925092565b6000806040838503121561117d57600080fd5b823561118881610ece565b946020939093013593505050565b6000602082840312156111a857600080fd5b5035919050565b6000806000606084860312156111c457600080fd5b83356111cf81610ece565b925060208401356111df81610ece565b929592945050506040919091013590565b634e487b7160e01b600052603260045260246000fd5b60006020828403121561121857600080fd5b8151610fea81610ece565b60006020828403121561123557600080fd5b8151610fea81610ee356fea26469706673582212205aac512e88eea2d4b95cbe680a530a43e143e497ba79998c92c9e0864164a09564736f6c634300081c00330000000000000000000000002694f30c39585192c21e3873b1b71ccf7f741fe2
Dağıtılmış ByteCode
0x608060405234801561001057600080fd5b50600436106101585760003560e01c806371f3cd0d116100c3578063b5d10df91161007c578063b5d10df9146102e7578063baecd77f146102fa578063c85396bf1461030d578063d285b7b414610320578063e5711e8b14610333578063f2fde38b1461034657600080fd5b806371f3cd0d1461026e57806373ad6c2d146102815780638456cb5914610294578063885ef2901461029c5780638da5cb5b146102af578063abc8c7af146102d457600080fd5b8063429b62e511610115578063429b62e5146101ff57806345f34952146102225780634b0bddd2146102355780635c975abb14610248578063633a645d14610253578063715018a61461026657600080fd5b8063030e2c881461015d578063087f010e14610172578063150b7a021461018557806324d7806c146101c15780633f4ba83a146101e457806341f7b092146101ec575b600080fd5b61017061016b366004610f01565b610359565b005b610170610180366004610fcd565b6103bf565b6101a3610193366004610ff1565b630a85bd0160e11b949350505050565b6040516001600160e01b031990911681526020015b60405180910390f35b6101d46101cf366004610fcd565b610440565b60405190151581526020016101b8565b610170610491565b6101706101fa366004610fcd565b6104ab565b6101d461020d366004610fcd565b60016020526000908152604090205460ff1681565b6101706102303660046110ba565b61052c565b6101706102433660046110ef565b6106f4565b60025460ff166101d4565b610170610261366004611128565b61070a565b610170610774565b61017061027c36600461116a565b610786565b61017061028f366004610fcd565b610845565b6101706108c6565b6101706102aa366004611196565b6108de565b6000546001600160a01b03165b6040516001600160a01b0390911681526020016101b8565b6006546102bc906001600160a01b031681565b6005546102bc906001600160a01b031681565b6101706103083660046111af565b61097d565b61017061031b36600461116a565b610a77565b6004546102bc906001600160a01b031681565b6101706103413660046111af565b610afa565b610170610354366004610fcd565b610b3d565b610361610b7b565b81516000036103835760405163251f56a160e21b815260040160405180910390fd5b60005b82518110156103ba576103b28382815181106103a4576103a46111f0565b602002602001015183610ba8565b600101610386565b505050565b6103c7610b7b565b6001600160a01b0381166103ee5760405163e6c4247b60e01b815260040160405180910390fd5b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f4cef211b36a7ba1e9f8e51e9570b3cf4ed7cb4ae4f0aa087b09ce4b567b59aa490600090a35050565b6000816001600160a01b031661045e6000546001600160a01b031690565b6001600160a01b0316148061048b57506001600160a01b03821660009081526001602052604090205460ff165b92915050565b610499610b7b565b6104a1610c2e565b6104a9610c51565b565b6104b3610b7b565b6001600160a01b0381166104da5760405163e6c4247b60e01b815260040160405180910390fd5b600480546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f2868942214ddba6cd1a9accf5649fef678605050ad1c3c01b33c361dcb4e9c6290600090a35050565b610534610ca3565b6000546001600160a01b0316331480159061055f57503360009081526001602052604090205460ff16155b1561059057335b60405163342e52ad60e21b81526001600160a01b0390911660048201526024015b60405180910390fd5b60065460405163095ea7b360e01b81526001600160a01b039182166004820152602481018490529084169063095ea7b390604401600060405180830381600087803b1580156105de57600080fd5b505af11580156105f2573d6000803e3d6000fd5b505060065460055460408051635b0cb9c560e11b815290516001600160a01b03938416955063f4bc9a8a945088938893169163b619738a9160048083019260209291908290030181865afa15801561064e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106729190611206565b60055460405160e086901b6001600160e01b03191681526001600160a01b039485166004820152602481019390935290831660448301526064820186905291909116608482015260a4015b600060405180830381600087803b1580156106d757600080fd5b505af11580156106eb573d6000803e3d6000fd5b50505050505050565b6106fc610b7b565b6107068282610ba8565b5050565b610712610b7b565b6001600160a01b0381166107395760405163e6c4247b60e01b815260040160405180910390fd5b6040516323b872dd60e01b81523060048201526001600160a01b038281166024830152604482018490528416906323b872dd906064016106bd565b61077c610b7b565b6104a96000610cc7565b61078e610ca3565b6005546001600160a01b03163381146107c857335b604051637e6f22d960e01b81526001600160a01b039091166004820152602401610587565b60055460405163095ea7b360e01b81526001600160a01b039182166004820152602481018490529084169063095ea7b3906044016020604051808303816000875af115801561081b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061083f9190611223565b50505050565b61084d610b7b565b6001600160a01b0381166108745760405163e6c4247b60e01b815260040160405180910390fd5b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f22122696dd612fc8f6a7ed06a9e60a22e7fbae0cb347b5f47ab0a148cb8b2d6090600090a35050565b6108ce610b7b565b6108d6610ca3565b6104a9610d17565b6108e6610ca3565b6000546001600160a01b0316331480159061091157503360009081526001602052604090205460ff16155b1561091c5733610566565b60065460405163c2a5cbf160e01b8152600481018390526001600160a01b039091169063c2a5cbf190602401600060405180830381600087803b15801561096257600080fd5b505af1158015610976573d6000803e3d6000fd5b5050505050565b610985610d54565b61098d610ca3565b6004546001600160a01b03163381146109a657336107a3565b600554604051632dd67e5560e21b8152600481018490526001600160a01b039091169063b759f95490602401600060405180830381600087803b1580156109ec57600080fd5b505af1158015610a00573d6000803e3d6000fd5b5050600554610a1f92506001600160a01b038781169250168585610d7e565b826001600160a01b0316846001600160a01b03167fd1fdb060ebcebbe0f64716e26e573d67fd29e5ec9229ba5da5d1c361f6ef980884604051610a6491815260200190565b60405180910390a3506103ba6001600355565b610a7f610ca3565b6004546001600160a01b0316338114610a9857336107a3565b600554610ab2906001600160a01b03858116911684610de5565b826001600160a01b03167f86752b2eca38ca0c907c0f8fbbaa11559477b8e72e307c8bdc26b7c7b495789283604051610aed91815260200190565b60405180910390a2505050565b610b02610b7b565b6001600160a01b038216610b295760405163e6c4247b60e01b815260040160405180910390fd5b6103ba6001600160a01b0384168383610de5565b610b45610b7b565b6001600160a01b038116610b6f57604051631e4fbdf760e01b815260006004820152602401610587565b610b7881610cc7565b50565b6000546001600160a01b031633146104a95760405163118cdaa760e01b8152336004820152602401610587565b6001600160a01b038216610bcf5760405163e6c4247b60e01b815260040160405180910390fd5b6001600160a01b038216600081815260016020908152604091829020805460ff191685151590811790915591519182527f55a5194bc0174fcaf12b2978bef43911466bf63b34db8d1dd1a0d5dcd5c41bea910160405180910390a25050565b60025460ff166104a957604051638dfc202b60e01b815260040160405180910390fd5b610c59610c2e565b6002805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b60025460ff16156104a95760405163d93c066560e01b815260040160405180910390fd5b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b610d1f610ca3565b6002805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258610c863390565b600260035403610d7757604051633ee5aeb560e01b815260040160405180910390fd5b6002600355565b6040516001600160a01b03848116602483015283811660448301526064820183905261083f9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050610e16565b6040516001600160a01b038381166024830152604482018390526103ba91859182169063a9059cbb90606401610db3565b600080602060008451602086016000885af180610e39576040513d6000823e3d81fd5b50506000513d91508115610e51578060011415610e5e565b6001600160a01b0384163b155b1561083f57604051635274afe760e01b81526001600160a01b0385166004820152602401610587565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff81118282101715610ec657610ec6610e87565b604052919050565b6001600160a01b0381168114610b7857600080fd5b8015158114610b7857600080fd5b8035610efc81610ee3565b919050565b60008060408385031215610f1457600080fd5b823567ffffffffffffffff811115610f2b57600080fd5b8301601f81018513610f3c57600080fd5b803567ffffffffffffffff811115610f5657610f56610e87565b8060051b610f6660208201610e9d565b91825260208184018101929081019088841115610f8257600080fd5b6020850194505b83851015610fb05784359250610f9e83610ece565b82825260209485019490910190610f89565b8096505050505050610fc460208401610ef1565b90509250929050565b600060208284031215610fdf57600080fd5b8135610fea81610ece565b9392505050565b6000806000806080858703121561100757600080fd5b843561101281610ece565b9350602085013561102281610ece565b925060408501359150606085013567ffffffffffffffff81111561104557600080fd5b8501601f8101871361105657600080fd5b803567ffffffffffffffff81111561107057611070610e87565b611083601f8201601f1916602001610e9d565b81815288602083850101111561109857600080fd5b8160208401602083013760006020838301015280935050505092959194509250565b6000806000606084860312156110cf57600080fd5b83356110da81610ece565b95602085013595506040909401359392505050565b6000806040838503121561110257600080fd5b823561110d81610ece565b9150602083013561111d81610ee3565b809150509250929050565b60008060006060848603121561113d57600080fd5b833561114881610ece565b925060208401359150604084013561115f81610ece565b809150509250925092565b6000806040838503121561117d57600080fd5b823561118881610ece565b946020939093013593505050565b6000602082840312156111a857600080fd5b5035919050565b6000806000606084860312156111c457600080fd5b83356111cf81610ece565b925060208401356111df81610ece565b929592945050506040919091013590565b634e487b7160e01b600052603260045260246000fd5b60006020828403121561121857600080fd5b8151610fea81610ece565b60006020828403121561123557600080fd5b8151610fea81610ee356fea26469706673582212205aac512e88eea2d4b95cbe680a530a43e143e497ba79998c92c9e0864164a09564736f6c634300081c0033